Menu Close

prove-that-lim-x-x-1-x-1-




Question Number 75694 by malwaan last updated on 15/Dec/19
prove that   lim_(x→∞)  x^(1/x)  =1
provethatlimxx1x=1
Answered by vishalbhardwaj last updated on 15/Dec/19
(as x→∞ then (1/x) → 0)  ⇒ lim_(x→ ∞) x^(lim_(x→∞) (1/x)) = lim_(x→∞) (x)^0  = 1
(asxthen1x0)limxxlimx1x=limx(x)0=1
Commented by malwaan last updated on 15/Dec/19
but lim_(x→∞)  x^0  = ∞^0  undefind
butlimxx0=0undefind
Commented by vishalbhardwaj last updated on 15/Dec/19
whatever the value if x is there, but  the whole power is zero, that why  its value will be zero in the sense
whateverthevalueifxisthere,butthewholepoweriszero,thatwhyitsvaluewillbezerointhesense
Commented by MJS last updated on 15/Dec/19
you cannot split it like this  lim_(x→∞) x^(1/x) ≠(lim_(x→∞) x)^((lim_(x→∞) (1/x)))   because lim_(x→∞) x =∞∉R  and r^0 =1 only for r∈R\{0}
youcannotsplititlikethislimxx1x(limxx)(limx1x)becauselimxx=Randr0=1onlyforrR{0}
Answered by MJS last updated on 15/Dec/19
lim_(x→∞) x^(1/x) =lim_(x→∞) e^((ln x)/x) =e^(lim_(x→∞) ((ln x)/x))   lim_(x→∞) ((ln x)/x)=lim_(x→∞) (((d/dx)[ln x])/((d/dx)[x]))=lim_(x→∞) (1/x)=0  ⇒ e^(lim_(x→∞) ((ln x)/x)) =1 ⇒ lim_(x→∞) e^((ln x)/x) =1 ⇒ lim_(x→∞) x^(1/x) =1
limxx1x=limexlnxx=elimxlnxxlimxlnxx=limxddx[lnx]ddx[x]=limx1x=0elimxlnxx=1limexlnxx=1limxx1x=1
Commented by vishalbhardwaj last updated on 15/Dec/19
sir, Is my assumption and explantion wrong ??
sir,Ismyassumptionandexplantionwrong??
Commented by malwaan last updated on 16/Dec/19
thank you so much
thankyousomuch
Answered by $@ty@m123 last updated on 15/Dec/19
Solution:  Let  y= lim_(x→∞)   x^(1/x)              ln y= lim_(x→∞)    (1/x)ln x   ⇒   ln y= 0   ⇒ y=1
Solution:Lety=limxx1xlny=limx1xlnxlny=0y=1

Leave a Reply

Your email address will not be published. Required fields are marked *