prove-that-lim-x-x-x-2-x-2-x-1-2-x-1-2x-2-2x-1-e- Tinku Tara June 3, 2023 Limits 0 Comments FacebookTweetPin Question Number 77442 by aliesam last updated on 06/Jan/20 provethatlimx→∞(∣xx2(x+2)(x+1)2(x+1)2x2+2x+1∣)=e Answered by aliesam last updated on 06/Jan/20 L=limx→∞∣(xx2(x+1)x2)×((x+2)(x+1)2(x+1)(x+1)2)∣L=limx→∞(∣(xx+1)x2×(x+2x+1)(x+1)2∣L=limx→∞∣(1−1x+1)x2×(1+1x+1)(x+1)2∣L=limx→∞e∣x2ln(1−1x+1)+(x+1)2ln(1+1x+1)∣limz→0L=limLx→∞whenz=1x+1andx2=1z2−2z+1(x+1)2=1z2L=limz→0e∣ln(1−z)z2−2ln(1−z)z+ln(1−z)+ln(1+z)z2∣L=e−1+2=e Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Assuming-it-rained-at-a-constant-rate-and-the-rain-fell-at-angle-to-the-ground-see-diagram-determine-if-walking-or-running-causes-you-to-get-more-less-wet-or-of-it-makes-no-difference-for-1-Next Next post: Question-142983 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.