Menu Close

prove-that-lim-x-x-x-2-x-2-x-1-2-x-1-2x-2-2x-1-e-




Question Number 77442 by aliesam last updated on 06/Jan/20
prove that  lim_(x→∞)  (∣((x^x^2  (x+2)^((x+1)^2 ) )/((x+1)^(2x^2 +2x+1) ))∣)=e
provethatlimx(xx2(x+2)(x+1)2(x+1)2x2+2x+1)=e
Answered by aliesam last updated on 06/Jan/20
L=lim_(x→∞)   ∣((x^x^2  /((x+1)^x^2  ))) ×((((x+2)^((x+1)^2 ) )/((x+1)^((x+1)^2 ) )))∣   L=lim_(x→∞) (∣ ((x/(x+1)))^x^2  × (((x+2)/(x+1)))^((x+1)^2 ) ∣   L=lim_(x→∞) ∣( 1−(1/(x+1)))^x^2   × (1+(1/(x+1)))^((x+1)^2 ) ∣  L=lim_(x→∞)  e^(∣x^2 ln(1−(1/(x+1)))+(x+1)^2 ln(1+(1/(x+1)))∣)   lim_(z→0)  L=lim_(x→∞) L   when z=(1/(x+1)) and x^2 =(1/z^2 ) − (2/z) +1  (x+1)^2 =(1/z^2 )    L=lim_(z→0)  e^(∣((ln(1−z))/z^2 ) − ((2ln(1−z))/z) + ln(1−z) +((ln(1+z))/z^2 )∣)   L=e^(−1+2) =e
L=limx(xx2(x+1)x2)×((x+2)(x+1)2(x+1)(x+1)2)L=limx((xx+1)x2×(x+2x+1)(x+1)2L=limx(11x+1)x2×(1+1x+1)(x+1)2L=limxex2ln(11x+1)+(x+1)2ln(1+1x+1)limz0L=limLxwhenz=1x+1andx2=1z22z+1(x+1)2=1z2L=limz0eln(1z)z22ln(1z)z+ln(1z)+ln(1+z)z2L=e1+2=e

Leave a Reply

Your email address will not be published. Required fields are marked *