Menu Close

Prove-that-line-lx-my-n-0-is-tangent-to-the-ellipse-x-2-a-2-y-2-b-2-1-if-a-2-l-2-b-2-m-2-n-2-




Question Number 77127 by peter frank last updated on 03/Jan/20
Prove that line lx+my+n=0  is tangent to the ellipse  (x^2 /a^2 )+(y^2 /b^(2 ) )=1 if a^2 l^2 +b^2 m^2 =n^2
Provethatlinelx+my+n=0istangenttotheellipsex2a2+y2b2=1ifa2l2+b2m2=n2
Answered by jagoll last updated on 03/Jan/20
suppose a > b ⇔ tangent line   ellips (x^2 /a^2 )+(y^2 /b^2 )=1 ⇒ y = mx ± (√(a^2 m^2 +b^2 ))  equal to lx +my +n = 0⇒   y = −(l/m)x−(n/m)   m = −(l/m) ⇒ m^2 =−l   −(n/m)=−(√(a^2 m^2 +b^2 ))  ⇒ (n^2 /m^2 )=a^2 m^2 +b^2    n^2 =(−l)(−la^2 +b^2 )   n^2 = l^2 a^2 −lb^2  ⇒n^2 =l^2 a^2 +m^2 b^2
supposea>btangentlineellipsx2a2+y2b2=1y=mx±a2m2+b2equaltolx+my+n=0y=lmxnmm=lmm2=lnm=a2m2+b2n2m2=a2m2+b2n2=(l)(la2+b2)n2=l2a2lb2n2=l2a2+m2b2
Commented by peter frank last updated on 03/Jan/20
thank you
thankyou
Answered by mr W last updated on 03/Jan/20
b^2 x^2 +a^2 y^2 =a^2 b^2   m^2 b^2 x^2 +a^2 m^2 y^2 =m^2 a^2 b^2   m^2 b^2 x^2 +a^2 (lx+n)^2 =m^2 a^2 b^2   m^2 b^2 x^2 +a^2 (l^2 x^2 +n^2 +2lnx)=m^2 a^2 b^2   (a^2 l^2 +b^2 m^2 )x^2 +2a^2 lnx+a^2 (n^2 −b^2 m^2 )=0  due to tangency:  Δ=(2a^2 ln)^2 −4(a^2 l^2 +b^2 m^2 )a^2 (n^2 −b^2 m^2 )=0  a^2 l^2 n^2 −(a^2 l^2 +b^2 m^2 )(n^2 −b^2 m^2 )=0  (−n^2 +a^2 l^2 +b^2 m^2 )b^2 m^2 =0  ⇒a^2 l^2 +b^2 m^2 =n^2
b2x2+a2y2=a2b2m2b2x2+a2m2y2=m2a2b2m2b2x2+a2(lx+n)2=m2a2b2m2b2x2+a2(l2x2+n2+2lnx)=m2a2b2(a2l2+b2m2)x2+2a2lnx+a2(n2b2m2)=0duetotangency:Δ=(2a2ln)24(a2l2+b2m2)a2(n2b2m2)=0a2l2n2(a2l2+b2m2)(n2b2m2)=0(n2+a2l2+b2m2)b2m2=0a2l2+b2m2=n2
Commented by peter frank last updated on 03/Jan/20
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *