Menu Close

Prove-that-log-n-gt-3n-10-1-2-1-3-1-4-1-n-1-




Question Number 5900 by 314159 last updated on 04/Jun/16
Prove that  log n! >((3n)/(10))((1/2)+(1/3)+(1/4)+...+(1/n)−1).
Provethatlogn!>3n10(12+13+14++1n1).
Answered by Yozzii last updated on 05/Jun/16
Let for n∈N,n≥2,   P(n): logn!>((3n)/(10))((1/2)+(1/3)+(1/4)+...+(1/n)−1).  For n=2⇒log2>((3×2)/(10))((1/2)−1)=−0.3  and log2>0>−0.3. So, P(n) is  true when n=2.    Assume when n=k, P(k) is true  ⇒logk!>((3k)/(10))((1/2)+(1/3)+(1/4)+...+(1/k)−1)  ⇒logk!−((3k)/(10))((1/2)+(1/3)+(1/4)+...+(1/k)−1)>0.  Consider when n=k+1.  Let φ=log(k+1)!−((3(k+1))/(10))((1/2)+(1/3)+(1/4)+...+(1/k)+(1/(k+1))−1).  Let u=(1/2)+(1/3)+(1/4)+...+(1/k)−1.  ∴φ=log(k+1)!−((3(k+1))/(10))(u+(1/(k+1)))  φ=logk!+log(k+1)−((3ku)/(10))−((3k)/(10(k+1)))−((3u)/(10))−(3/(10(k+1)))  φ=(logk!−((3ku)/(10)))+logk(1+(1/k))−(3/(10))(1+u)  φ=(logk!−((3ku)/(10)))+logk+log(1+(1/k))−(3/(10))((1/2)+(1/3)+(1/4)+...+(1/k))    Now, Σ_(i=1) ^k (1/i)=H(k)≤1+logk.  ⇒−(H(k)−1)≥−logk  ⇒((−3)/(10))(H(k)−1)≥−(3/(10))logk  ⇒logk+log(1+k^(−1) )−(3/(10))(H(k)−1)≥(7/(10))logk+log(1+k^(−1) )>0  (k≥2)  ⇒(logk!−((3ku)/(10)))+log(k+1)−(3/(10))(H(k)−1)>0 since P(k)⇒(logk!−((3uk)/(10)))>0.  So, P(k)⇒P(k+1).  ∴ Since P(2) is true⇒P(n) is true by P.M.I  for all n≥2.
LetfornN,n2,P(n):logn!>3n10(12+13+14++1n1).Forn=2log2>3×210(121)=0.3andlog2>0>0.3.So,P(n)istruewhenn=2.Assumewhenn=k,P(k)istruelogk!>3k10(12+13+14++1k1)logk!3k10(12+13+14++1k1)>0.Considerwhenn=k+1.Letϕ=log(k+1)!3(k+1)10(12+13+14++1k+1k+11).Letu=12+13+14++1k1.ϕ=log(k+1)!3(k+1)10(u+1k+1)ϕ=logk!+log(k+1)3ku103k10(k+1)3u10310(k+1)ϕ=(logk!3ku10)+logk(1+1k)310(1+u)ϕ=(logk!3ku10)+logk+log(1+1k)310(12+13+14++1k)Now,ki=11i=H(k)1+logk.(H(k)1)logk310(H(k)1)310logklogk+log(1+k1)310(H(k)1)710logk+log(1+k1)>0(k2)(logk!3ku10)+log(k+1)310(H(k)1)>0sinceP(k)(logk!3uk10)>0.So,P(k)P(k+1).SinceP(2)istrueP(n)istruebyP.M.Iforalln2.
Commented by 314159 last updated on 05/Jun/16
Thanks a lot!
Thanksalot!

Leave a Reply

Your email address will not be published. Required fields are marked *