Menu Close

prove-that-m-N-a-k-b-k-R-cos-2m-x-k-1-m-a-k-cos-2kx-cos-2m-1-x-k-1-m-b-k-cos-2k-1-x-and-find-expr-of-a-k-b-k-in-terms-of-k-




Question Number 144000 by bluberry508 last updated on 20/Jun/21
prove that     ∀_m ∈N , a_k ,b_k ∈R  cos^(2m) x =Σ_(k=1) ^m a_k cos 2kx  cos^(2m−1) x=Σ_(k=1) ^m b_k cos (2k−1)x    and  find expr  of  a_k  ,b_k  in terms of k.
provethatmN,ak,bkRcos2mx=mk=1akcos2kxcos2m1x=mk=1bkcos(2k1)xandfindexprofak,bkintermsofk.
Answered by mathmax by abdo last updated on 20/Jun/21
cos^(2m) x =(((e^(ix) +e^(−ix) )/2))^(2m)  =(1/2^(2m) )Σ_(k=0) ^(2m)  C_(2m) ^k  (e^(ix) )^k (e^(−ix) )^(2m−k)   =(1/2^(2m) )Σ_(k=0) ^(2m)  e^(ikx) .e^(−i(2m−k)x)   =(1/2^(2m) )Σ_(k=0) ^(2m) C_(2m) ^k  e^(i(2k−2m)x) =(1/2^(2m) )Σ_(k=0) ^(2m) C_(2m) ^k  e^(2i(k−m)x)   =(1/2^(2m) )Σ_(k=0) ^(2m)  C_(2m) ^k  cos2(k−m)x +(i/2^(2m) )Σ_(k0) ^(2m)  C_(2m) ^k  sin2(k−m)x  but cos^(2m) x is real ⇒cos^(2m) x=(1/2^(2m) )Σ_(k=0) ^(2m)  C_(2m) ^k  cos2(k−m)x  =_(k−m=j)    (1/2^(2m) )Σ_(j=−m) ^m  C_(2m) ^(m+j)  cos2jx  =(1/2^(2m) )Σ_(j=−m) ^(−1) C_(2m) ^(m+j) cos(2jx) +(C_(2m) ^m /2^(2m) ) +Σ_(j=1) ^m  C_(2m) ^(m+j)  cos(2jx)  =_(j=−k)     (1/2^(2m) )Σ_(k=1) ^m  C_(2m) ^(m−k) cos(2kx) +(C_(2m) ^m /2^(2m) ) +(1/2^(2m) )Σ_(k=1) ^m  C_(2m) ^(m−k)  cos(2kx)  =1+(2/2^(2m) )Σ_(k=1) ^m  C_(2m) ^(m−k)  cos(2kx) =(C_(2m) ^m /2^(2m) )+(1/2^(2m−1) )Σ_(k=1) ^m  C_(2m) ^(m−k)  cos(2kx)  ⇒a_k =Σ_(k=1) ^m  (C_(2m) ^(m−k) /2^(2m−1) )  for k≥1 and a_0 =(C_(2m) ^m /2^(2m) )  cos^(2m) x=a_0 +Σ_(k=1) ^m  a_k cos(2kx)
cos2mx=(eix+eix2)2m=122mk=02mC2mk(eix)k(eix)2mk=122mk=02meikx.ei(2mk)x=122mk=02mC2mkei(2k2m)x=122mk=02mC2mke2i(km)x=122mk=02mC2mkcos2(km)x+i22mk02mC2mksin2(km)xbutcos2mxisrealcos2mx=122mk=02mC2mkcos2(km)x=km=j122mj=mmC2mm+jcos2jx=122mj=m1C2mm+jcos(2jx)+C2mm22m+j=1mC2mm+jcos(2jx)=j=k122mk=1mC2mmkcos(2kx)+C2mm22m+122mk=1mC2mmkcos(2kx)=1+222mk=1mC2mmkcos(2kx)=C2mm22m+122m1k=1mC2mmkcos(2kx)ak=k=1mC2mmk22m1fork1anda0=C2mm22mcos2mx=a0+k=1makcos(2kx)
Commented by bluberry508 last updated on 20/Jun/21
wow...  I haven′t ever expected this view  thank you sir
wowIhaventeverexpectedthisviewthankyousir
Commented by Dwaipayan Shikari last updated on 20/Jun/21
Sorry i have marked your comment as inappropiate  by mistake .
Sorryihavemarkedyourcommentasinappropiatebymistake.
Commented by Rasheed.Sindhi last updated on 20/Jun/21
And I′ve cleared the red mark by  liking the post!
AndIveclearedtheredmarkbylikingthepost!
Commented by Dwaipayan Shikari last updated on 20/Jun/21
Thanks sir
Thankssir
Commented by mathmax by abdo last updated on 20/Jun/21
you are welcome
youarewelcome

Leave a Reply

Your email address will not be published. Required fields are marked *