Menu Close

Prove-that-m-N-r-1-m-2m-2r-1-2r-1-2m-1-r-1-m-2m-2r-2r-2m-1-




Question Number 8013 by Yozzia last updated on 28/Sep/16
Prove that, ∀m∈N,  Σ_(r=1) ^m  (((2m)),((2r−1)) ) (2r−1)^(2m−1) =Σ_(r=1) ^m  (((2m)),((2r)) ) (2r)^(2m−1) .
Provethat,mN,mr=1(2m2r1)(2r1)2m1=mr=1(2m2r)(2r)2m1.
Commented by FilupSmith last updated on 28/Sep/16
(((2m)!×(2r−1)^(2m−1) )/((2r−1)!×(2x−2r+1)!))=(((2m)!×(2r)^(2m−1) )/((2r)!×(2x−2r)!))  (((2m)!×(2r−1)^(2m−1) )/((2r−1)!×(2x−2r+1)!))=(((2m)!×(2r)^(2m−2) )/((2r−1)!×(2x−2r)!))  (((2r−1)^(2m−1) )/((2x−2r+1)!))=(((2r)^(2m−2) )/((2x−2r)!))  (((2r−1)^(2m−1) )/((2x−2r+1)!))=(((2r)^(2m−2) )/((2x−2r)!))  (((2r−1)^(2m−1) )/((2r)^(2m−2) ))=(((2x−2r+1)!)/((2x−2r)!))  (((2r−1)^(2m−2) (2r−1))/((2r)^(2m−2) ))=(((2x−2r+1)!)/((2x−2r)!))  (((2r−1)/(2r)))^(2m−2) (2r−1)=(((2x−2r+1)!)/((2x−2r)!))  in construction
(2m)!×(2r1)2m1(2r1)!×(2x2r+1)!=(2m)!×(2r)2m1(2r)!×(2x2r)!(2m)!×(2r1)2m1(2r1)!×(2x2r+1)!=(2m)!×(2r)2m2(2r1)!×(2x2r)!(2r1)2m1(2x2r+1)!=(2r)2m2(2x2r)!(2r1)2m1(2x2r+1)!=(2r)2m2(2x2r)!(2r1)2m1(2r)2m2=(2x2r+1)!(2x2r)!(2r1)2m2(2r1)(2r)2m2=(2x2r+1)!(2x2r)!(2r12r)2m2(2r1)=(2x2r+1)!(2x2r)!inconstruction
Commented by prakash jain last updated on 30/Sep/16
Σ_(r=1) ^m  (((2m)),((2r−1)) ) (2r−1)^(2m−1) =Σ_(r=1) ^m  (((2m)),((2r)) ) (2r)^(2m−1) .  m=2  ^4 C_1 ∙1^3 +^4 C_3 3^3 =^4 C_2 2^3 +^4 C_4 4^3   4×1+1×27≠6×8+64 ?
mr=1(2m2r1)(2r1)2m1=mr=1(2m2r)(2r)2m1.m=24C113+4C333=4C223+4C4434×1+1×276×8+64?
Commented by Yozzia last updated on 30/Sep/16
4×1+4×27=6×8+64
4×1+4×27=6×8+64
Commented by prakash jain last updated on 30/Sep/16
Ok. I made this error so many times.
Ok.Imadethiserrorsomanytimes.
Answered by prakash jain last updated on 01/Oct/16
(1−e^x )^(2m) =Σ_(k=0) ^(2m) ^(2m) C_k e^(kx) (−1)^k   Let us write C_k  for^(2m) C_k   (d^(2m−1) /dx^(2m−1) )(1−e^x )^(2m) =Σ_(k=1) ^(2m) ^(2m) C_k k^(2m−1) (−1)^k   index start from 1 since k=0 is a constant   with derivative 0.  LHS is 0 at x=0 since (1−e^x ) will be factor.  RHS  −C_1 (1)^(2m−1) +C_2 (2)^(2m−1) +−..+C_(2m) (2m)^(2m−1) =0  ⇒Σ_(r=1) ^m C_(2r) (2r)^(2m−1) =Σ_(r=1) ^m C_(2r−1) (2r−1)^(2m−1)   odd terms equal to even term (excep C_0 )
(1ex)2m=2mk=02mCkekx(1)kLetuswriteCkfor2mCkd2m1dx2m1(1ex)2m=2mk=12mCkk2m1(1)kindexstartfrom1sincek=0isaconstantwithderivative0.LHSis0atx=0since(1ex)willbefactor.RHSC1(1)2m1+C2(2)2m1+..+C2m(2m)2m1=0mr=1C2r(2r)2m1=mr=1C2r1(2r1)2m1oddtermsequaltoeventerm(excepC0)

Leave a Reply

Your email address will not be published. Required fields are marked *