Menu Close

prove-that-n-0-1-3n-e-3-2-3-e-cos-3-2-




Question Number 139457 by mnjuly1970 last updated on 27/Apr/21
 _           prove that ::          Σ_(n=0) ^∞ (1/((3n)!)) =(e/3)+(2/(3(√e))) cos(((√3)/2))
provethat::n=01(3n)!=e3+23ecos(32)
Answered by Dwaipayan Shikari last updated on 27/Apr/21
Σ_(n=0) ^∞ (x^(3n) /((3n)!))=((e^x +e^(ωx) +e^(ω^2 x) )/3)  ω=e^(2πi/3)   =((e^x +2e^(−(x/2)) cos(((√3)/2)x))/3)   x=1:→Σ_(n=0) ^∞ (1/((3n)!))=((e+2e^(−(1/2)) cos(((√3)/2)))/3)
n=0x3n(3n)!=ex+eωx+eω2x3ω=e2πi/3=ex+2ex2cos(32x)3x=1:→n=01(3n)!=e+2e12cos(32)3
Commented by Dwaipayan Shikari last updated on 27/Apr/21
For n=4  it is Σ_(n=0) ^∞ (x^(4n) /((4n)!))=((Σ_(i=1) ^(Roots of x^4 =1) e^(a_1 x) )/4)=((e^(−ix) +e^(ix) +e^x +e^(−x) )/4)  =((cosh(x)+cos(x))/2)  For n=2  Σ_(n=0) ^∞ (x^(2n) /((2n)!))=((Σ_(i=1) ^(Roots of x^2 =1) e^(a_i x) )/2)=((e^x +e^(−x) )/2)=cosh(x)  For  n=1  Σ_(n=0) ^∞ (x^n /(n!))=((Σ_(i=1) ^(Roots of x=1) e^(a_i x) )/1) =e^x
Forn=4itisn=0x4n(4n)!=Rootsofx4=1i=1ea1x4=eix+eix+ex+ex4=cosh(x)+cos(x)2Forn=2n=0x2n(2n)!=Rootsofx2=1i=1eaix2=ex+ex2=cosh(x)Forn=1n=0xnn!=Rootsofx=1i=1eaix1=ex
Commented by mnjuly1970 last updated on 27/Apr/21
 very nice...
verynice
Commented by Dwaipayan Shikari last updated on 27/Apr/21
But is it true for  Σ_(n=0) ^∞ (x^(an) /((an)!))=((Σ_(i=1) ^(Roots of x^a =1) e^(a_i x) )/a) ??  Any idea sir?
Butisittrueforn=0xan(an)!=Rootsofxa=1i=1eaixa??Anyideasir?
Commented by Dwaipayan Shikari last updated on 27/Apr/21
If i go for  Σ_(n=0) ^∞ (x^(6n) /((6n)!))=((Σ_(i=1) ^(Roots of x^6 =1) e^(a_i x) )/6)=((e^x +e^(−x) +e^((1/2)x) (e^(((√3)/2)ix) +e^(−((√3)/2)ix) )+e^(−(x/2)) (e^(((√3)/2)ix) +e^(−((√3)/2)ix) ))/6)   =((e^x +e^(−x) +2cos(((√3)/2)x)(e^(x/2) +e^(−x/2) ))/6)=((cosh(x)+2cos(((√3)/2)x)cosh((x/2)))/3)  ???
Ifigoforn=0x6n(6n)!=Rootsofx6=1i=1eaix6=ex+ex+e12x(e32ix+e32ix)+ex2(e32ix+e32ix)6=ex+ex+2cos(32x)(ex/2+ex/2)6=cosh(x)+2cos(32x)cosh(x2)3???

Leave a Reply

Your email address will not be published. Required fields are marked *