Menu Close

Prove-that-n-0-n-3n-2-2-diverges-




Question Number 142492 by leesjyons last updated on 01/Jun/21
Prove that Σ_(n = 0) ^∞ (n/(3n^2  + 2)) diverges.
$$\mathrm{Prove}\:\mathrm{that}\:\underset{{n}\:=\:\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}}{\mathrm{3}{n}^{\mathrm{2}} \:+\:\mathrm{2}}\:\mathrm{diverges}. \\ $$
Answered by mathmax by abdo last updated on 02/Jun/21
dvergence clear due[to  (n/(3n^2  +2))∼(1/(3n)) (n∼∞) and Σ (1/(3n))dv
$$\mathrm{dvergence}\:\mathrm{clear}\:\mathrm{due}\left[\mathrm{to}\:\:\frac{\mathrm{n}}{\mathrm{3n}^{\mathrm{2}} \:+\mathrm{2}}\sim\frac{\mathrm{1}}{\mathrm{3n}}\:\left(\mathrm{n}\sim\infty\right)\:\mathrm{and}\:\Sigma\:\frac{\mathrm{1}}{\mathrm{3n}}\mathrm{dv}\right. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *