Menu Close

prove-that-n-1-1-2n-1-e-2n-1-pi-e-2n-1-pi-ln-2-16-




Question Number 131732 by mnjuly1970 last updated on 07/Feb/21
   prove that:        Σ_(n=1) ^∞ (1/((2n−1)(e^((2n−1)π) −e^(−(2n−1)π) )))=((ln(2))/(16))
$$\:\:\:{prove}\:{that}: \\ $$$$\:\: \\ $$$$\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right)\left({e}^{\left(\mathrm{2}{n}−\mathrm{1}\right)\pi} −{e}^{−\left(\mathrm{2}{n}−\mathrm{1}\right)\pi} \right)}=\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{16}} \\ $$$$\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *