Question Number 7317 by lakshaysethi last updated on 24/Aug/16
![Prove that [((n+1)/2)]+[((n+2)/4)]+[((n+4)/8)]+[((n+8)/( 16))]+........=n. Such that [.] denotes greatest integer function and n∈N.](https://www.tinkutara.com/question/Q7317.png)
Commented by FilupSmith last updated on 23/Aug/16

Commented by prakash jain last updated on 23/Aug/16

Commented by Yozzia last updated on 24/Aug/16
![[(n/2)+(1/2)]+[(n/4)+(1/2)]+[(n/8)+(1/2)]+[(n/(16))+(1/2)]+...+[(n/2^k )+(1/2)]=S_k Any integer can be represented in base 2 according to the base representation theorem. ∴ n=Σ_(i=0) ^m a_i 2^i where each a_i =0 ∨ 1. ∴ (n/2^k )+(1/2)=(1/2)+Σ_(i=0) ^m a_i 2^(i−k) . Now, for k,m∈N, k<m or k=m or k>m. If k<m then for some i∈Z^≥ , i−k<0 or i<k⇒i≤k−1. Hence we can write (n/2^k )+(1/2)=R+a_k 2^(k−k) +a_(k+1) 2^((k+1)−k) +a_(k+2) 2^((k+2)−k) +...+a_(m−1) 2^((m−1)−k) +a_m 2^(m−k) (n/2^k )+(1/2)=R+a_k +a_(k+1) 2+a_(k+2) 2^2 +...+a_(m−1) 2^((m−1)−k) +a_m 2^(m−k) where R=2^(−1) +a_0 2^(0−k) +a_1 2^(1−k) +a_2 2^(2−k) +a_3 2^(3−k) +...+a_(k−2) 2^((k−2)−k) +a_(k−1) 2^((k−1)−k) . It is clear that the fractional part of (n/2^k )+(1/2) can only come from the R term. R=2^(−1) +a_(k−1) 2^(−1) +a_(k−2) 2^(−2) +...+a_3 2^(3−k) +a_2 2^(2−k) +a_1 2^(1−k) +a_0 2^(−k) We know that max(a_i )=1 and min(a_i )=0. ∴ 2^(−1) +0+0+0+...+0≤R≤2^(−1) +2^(−1) +2^(−2) +...+2^(3−k) +2^(2−k) +2^(1−k) +2^(−k) (1/2)≤R≤(1/2)+(((1/2)(((1/2))^(k+1) −1))/((1/2)−1)) (1/2)≤R≤(3/2)−(1/2^(k+1) ) for all k∈N. Since k≥1⇒ min((3/2)−(1/2^(k+1) ))=(6/4)−(1/4)=(5/4)>1 ∴(1/2)≤R≤(5/4)<(3/2) ⇒⌊R⌋=0 or ⌊R⌋=1 If (1/2)≤R<1 ⇒⌊R⌋=0⇒⌊(n/2^k )+(1/2)⌋=a_k +a_(k+1) 2+a_(k+2) 2^2 +a_(k+3) 2^3 +...+a_m 2^(m−k) =u(k). ∴ S_k =Σ_(i=1) ^k u(i) S_k =(1/2){2a_1 +2^2 a_2 +2^3 a_3 +2^4 a_4 +...+a_m 2^m } +(1/2^2 ){a_2 2^2 +2^3 a_3 +2^4 a_4 +2^5 a_5 +...+a_m 2^m } +(1/2^3 ){a_3 2^3 +2^4 a_4 +2^5 a_5 +2^6 a_6 +...+a_m 2^m } +...+(1/2^k ){a_k 2^k +a_(k+1) 2^(k+1) +a_(k+2) 2^(k+2) +...+a_m 2^m } S_k =(1/2)(n−a_0 )+(1/2^2 )(n−a_0 −2a_1 )+(1/2^3 )(n−a_0 −2a_1 −2^2 a_2 ) +...+(1/2^k )(n−Σ_(i=0) ^(k−1) a_i 2^i ) S_k =n(((1/2)(1−(1/2^(k+1) )))/(1−(1/2)))−Σ_(j=1) ^k {(1/2^j )Σ_(i=0) ^(j−1) a_i 2^i } S_k =n−[(n/2^(k+1) )+Σ_(j=0) ^k {(1/2^j )Σ_(i=0) ^(j−1) a_i 2^i }] −−−−−−−−−−−−−−−−−−−−−−−−− If k=m⇒(n/2^m )+(1/2)=R where R=2^(−1) +a_0 2^(−m) +a_1 2^(1−m) +a_2 2^(2−m) +a_3 2^(3−m) +...+a_(m−2) 2^(m−2−m) +a_(m−1) 2^(m−1−m) +a_m 2^(m−m) R=2^(−1) +a_m +a_(m−1) (1/2)+a_(m−2) (1/2^2 )+...+a_3 (1/2^(m−3) )+a_2 (1/2^(m−2) )+a_1 (1/2^(m−1) )+a_0 (1/2^m ). 2^(−1) ≤R≤(3/2)+(((1/2)(1−(1/2^(m+1) )))/(1−(1/2))) 2^(−1) ≤R≤(5/2)−(1/2^(m+1) ) ⇒⌊R⌋=0,1,2 −−−−−−−−−−−−−−−−−−−−−−− Continue...](https://www.tinkutara.com/question/Q7339.png)
Commented by lakshaysethi last updated on 24/Aug/16
