Menu Close

Prove-that-n-1-2-n-2-4-n-4-8-n-8-16-n-Such-that-denotes-greatest-integer-function-and-n-N-




Question Number 7317 by lakshaysethi last updated on 24/Aug/16
Prove that [((n+1)/2)]+[((n+2)/4)]+[((n+4)/8)]+[((n+8)/( 16))]+........=n.  Such that [.] denotes greatest integer function and n∈N.
Provethat[n+12]+[n+24]+[n+48]+[n+816]+..=n.Suchthat[.]denotesgreatestintegerfunctionandnN.
Commented by FilupSmith last updated on 23/Aug/16
S=Σ_(t=1) ^∞ ⌈((n+2^(t−1) )/2^t )⌉  S=Σ_(t=1) ^∞ ⌈(n/2^t )+(1/2)⌉  if  n≥2^t    ⇒   (n/2^t )≥1  ∴⌈(n/2^t )+(1/2)⌉≥2  if  n≤2^t    ⇒   (n/2^t )≤1  ∴⌈(n/2^t )+(1/2)⌉=1∨2    ∴ sequence is:  2+2+...+1+1+1+...+0   (0 when t=∞)  ∴S=∞    ∴⌈((n+2)/4)⌉+⌈((n+4)/6)⌉+⌈((n+8)/(16))⌉+...=n    is false  this is because for ((n+2^t )/2^(t+1) )>1, ⌈((n+2^t )/2^(t+1) )⌉≥1  therefore no solution exists for n∈N
S=t=1n+2t12tS=t=1n2t+12ifn2tn2t1n2t+122ifn2tn2t1n2t+12=12sequenceis:2+2++1+1+1++0(0whent=)S=n+24+n+46+n+816+=nisfalsethisisbecauseforn+2t2t+1>1,n+2t2t+11thereforenosolutionexistsfornN
Commented by prakash jain last updated on 23/Aug/16
Filup, n=1,2,3,4,5 etc satisfy this equation  n=1,1+0+0..=1=n  n=2,1+1+0+0+..=2=n  n=3,2+1+0+0..=3=n  n=4,2+1+1+..=4=n  n=5: 3+1+1=5=n  n=6: 3+2+1+..=n  Lakshay, is the question asking for proof?
Filup,n=1,2,3,4,5etcsatisfythisequationn=1,1+0+0..=1=nn=2,1+1+0+0+..=2=nn=3,2+1+0+0..=3=nn=4,2+1+1+..=4=nn=5:3+1+1=5=nn=6:3+2+1+..=nLakshay,isthequestionaskingforproof?
Commented by Yozzia last updated on 24/Aug/16
[(n/2)+(1/2)]+[(n/4)+(1/2)]+[(n/8)+(1/2)]+[(n/(16))+(1/2)]+...+[(n/2^k )+(1/2)]=S_k   Any integer can be represented in  base 2 according to the base representation theorem.  ∴ n=Σ_(i=0) ^m a_i 2^i    where each a_i =0 ∨ 1.  ∴ (n/2^k )+(1/2)=(1/2)+Σ_(i=0) ^m a_i 2^(i−k) .  Now, for k,m∈N, k<m or k=m or k>m.  If k<m then for some i∈Z^≥ , i−k<0  or i<k⇒i≤k−1. Hence we can write  (n/2^k )+(1/2)=R+a_k 2^(k−k) +a_(k+1) 2^((k+1)−k) +a_(k+2) 2^((k+2)−k) +...+a_(m−1) 2^((m−1)−k) +a_m 2^(m−k)   (n/2^k )+(1/2)=R+a_k +a_(k+1) 2+a_(k+2) 2^2 +...+a_(m−1) 2^((m−1)−k) +a_m 2^(m−k)   where R=2^(−1) +a_0 2^(0−k) +a_1 2^(1−k) +a_2 2^(2−k) +a_3 2^(3−k) +...+a_(k−2) 2^((k−2)−k) +a_(k−1) 2^((k−1)−k) .  It is clear that the fractional part of (n/2^k )+(1/2)  can only come from the R term.  R=2^(−1) +a_(k−1) 2^(−1) +a_(k−2) 2^(−2) +...+a_3 2^(3−k) +a_2 2^(2−k) +a_1 2^(1−k) +a_0 2^(−k)   We know that max(a_i )=1 and min(a_i )=0.  ∴ 2^(−1) +0+0+0+...+0≤R≤2^(−1) +2^(−1) +2^(−2) +...+2^(3−k) +2^(2−k) +2^(1−k) +2^(−k)   (1/2)≤R≤(1/2)+(((1/2)(((1/2))^(k+1) −1))/((1/2)−1))  (1/2)≤R≤(3/2)−(1/2^(k+1) ) for all k∈N.  Since k≥1⇒ min((3/2)−(1/2^(k+1) ))=(6/4)−(1/4)=(5/4)>1  ∴(1/2)≤R≤(5/4)<(3/2)  ⇒⌊R⌋=0 or ⌊R⌋=1  If (1/2)≤R<1 ⇒⌊R⌋=0⇒⌊(n/2^k )+(1/2)⌋=a_k +a_(k+1) 2+a_(k+2) 2^2 +a_(k+3) 2^3 +...+a_m 2^(m−k) =u(k).  ∴ S_k =Σ_(i=1) ^k u(i)  S_k =(1/2){2a_1 +2^2 a_2 +2^3 a_3 +2^4 a_4 +...+a_m 2^m }            +(1/2^2 ){a_2 2^2 +2^3 a_3 +2^4 a_4 +2^5 a_5 +...+a_m 2^m }                       +(1/2^3 ){a_3 2^3 +2^4 a_4 +2^5 a_5 +2^6 a_6 +...+a_m 2^m }  +...+(1/2^k ){a_k 2^k +a_(k+1) 2^(k+1) +a_(k+2) 2^(k+2) +...+a_m 2^m }  S_k =(1/2)(n−a_0 )+(1/2^2 )(n−a_0 −2a_1 )+(1/2^3 )(n−a_0 −2a_1 −2^2 a_2 )  +...+(1/2^k )(n−Σ_(i=0) ^(k−1) a_i 2^i )  S_k =n(((1/2)(1−(1/2^(k+1) )))/(1−(1/2)))−Σ_(j=1) ^k {(1/2^j )Σ_(i=0) ^(j−1) a_i 2^i }  S_k =n−[(n/2^(k+1) )+Σ_(j=0) ^k {(1/2^j )Σ_(i=0) ^(j−1) a_i 2^i }]  −−−−−−−−−−−−−−−−−−−−−−−−−  If k=m⇒(n/2^m )+(1/2)=R  where R=2^(−1) +a_0 2^(−m) +a_1 2^(1−m) +a_2 2^(2−m) +a_3 2^(3−m) +...+a_(m−2) 2^(m−2−m) +a_(m−1) 2^(m−1−m) +a_m 2^(m−m)   R=2^(−1) +a_m +a_(m−1) (1/2)+a_(m−2) (1/2^2 )+...+a_3 (1/2^(m−3) )+a_2 (1/2^(m−2) )+a_1 (1/2^(m−1) )+a_0 (1/2^m ).  2^(−1) ≤R≤(3/2)+(((1/2)(1−(1/2^(m+1) )))/(1−(1/2)))  2^(−1) ≤R≤(5/2)−(1/2^(m+1) )  ⇒⌊R⌋=0,1,2  −−−−−−−−−−−−−−−−−−−−−−−    Continue...
[n2+12]+[n4+12]+[n8+12]+[n16+12]++[n2k+12]=SkAnyintegercanberepresentedinbase2accordingtothebaserepresentationtheorem.n=mi=0ai2iwhereeachai=01.n2k+12=12+mi=0ai2ik.Now,fork,mN,k<mork=mork>m.Ifk<mthenforsomeiZ,ik<0ori<kik1.Hencewecanwriten2k+12=R+ak2kk+ak+12(k+1)k+ak+22(k+2)k++am12(m1)k+am2mkn2k+12=R+ak+ak+12+ak+222++am12(m1)k+am2mkwhereR=21+a020k+a121k+a222k+a323k++ak22(k2)k+ak12(k1)k.Itisclearthatthefractionalpartofn2k+12canonlycomefromtheRterm.R=21+ak121+ak222++a323k+a222k+a121k+a02kWeknowthatmax(ai)=1andmin(ai)=0.21+0+0+0++0R21+21+22++23k+22k+21k+2k12R12+12((12)k+11)12112R3212k+1forallkN.Sincek1min(3212k+1)=6414=54>112R54<32R=0orR=1If12R<1R=0n2k+12=ak+ak+12+ak+222+ak+323++am2mk=u(k).Sk=ki=1u(i)Sk=12{2a1+22a2+23a3+24a4++am2m}+122{a222+23a3+24a4+25a5++am2m}+123{a323+24a4+25a5+26a6++am2m}++12k{ak2k+ak+12k+1+ak+22k+2++am2m}Sk=12(na0)+122(na02a1)+123(na02a122a2)++12k(nk1i=0ai2i)Sk=n12(112k+1)112kj=1{12jj1i=0ai2i}Sk=n[n2k+1+kj=0{12jj1i=0ai2i}]Ifk=mn2m+12=RwhereR=21+a02m+a121m+a222m+a323m++am22m2m+am12m1m+am2mmR=21+am+am112+am2122++a312m3+a212m2+a112m1+a012m.21R32+12(112m+1)11221R5212m+1R=0,1,2Continue
Commented by lakshaysethi last updated on 24/Aug/16
yes sir(to prakash jain sir)
yessir(toprakashjainsir)

Leave a Reply

Your email address will not be published. Required fields are marked *