Menu Close

prove-that-n-1-a-n-b-n-p-1-p-n-1-a-n-p-1-p-n-1-b-n-p-1-p-




Question Number 9758 by richard last updated on 31/Dec/16
prove that  (Σ_(n=1) ^∞ (a_n +b_n )^p )^(1/p) ≤(Σ_(n=1) ^∞ a_n ^p )^(1/p) +(Σ_(n=1) ^∞ b_n ^p )^(1/p)
provethat(n=1(an+bn)p)1/p(n=1anp)1/p+(n=1bnp)1/p
Commented by FilupSmith last updated on 04/Jan/17
Attempting  ∴(Σ_(n=1) ^∞ (Σ_(v=0) ^p  ((p),(v) ) a_n ^(p−v) b_n ^p ))^(1/p) ≤(Σ_(n=1) ^∞ a_n ^p )^(1/p) +(Σ_(n=1) ^∞ b_n ^p )^(1/p)      let:                  A=(Σ_(n=1) ^∞ (a_n ^p ))                  B=(Σ_(n=1) ^∞ (b_n ^p ))  (Σ_(n=1) ^∞ (Σ_(v=0) ^p  ((p),(v) ) a_n ^(p−v) b_n ^p ))^(1/p) ≤(1/A^p )+(1/B^p )  (Σ_(n=1) ^∞ (Σ_(v=0) ^p  ((p),(v) ) a_n ^(p−v) b_n ^p ))^(1/p) ≤((A^p +B^p )/((AB)^p ))  (Σ_(n=1) ^∞ (Σ_(v=0) ^p  ((p),(v) ) a_n ^(p−v) b_n ^p ))^(1/p) ≤(((Σ_(n=1) ^∞ (a_n ^p ))^p +(Σ_(n=1) ^∞ (b_n ^p ))^p )/({(Σ_(n=1) ^∞ (a_n ^p ))(Σ_(n=1) ^∞ (b_n ^p ))}^p ))     Attempting
Attempting(n=1(pv=0(pv)anpvbnp))1/p(n=1anp)1/p+(n=1bnp)1/plet:A=(n=1(anp))B=(n=1(bnp))(n=1(pv=0(pv)anpvbnp))1/p1Ap+1Bp(n=1(pv=0(pv)anpvbnp))1/pAp+Bp(AB)p(n=1(pv=0(pv)anpvbnp))1/p(n=1(anp))p+(n=1(bnp))p{(n=1(anp))(n=1(bnp))}pAttempting

Leave a Reply

Your email address will not be published. Required fields are marked *