Menu Close

Prove-that-n-N-a-k-1-n-C-n-k-1-k-k-k-1-n-1-k-b-k-1-n-C-n-k-1-k-2k-1-4-n-2n-1-C-2n-n-




Question Number 143461 by Willson last updated on 14/Jun/21
Prove that : ∀n∈N^∗   a.       Σ_(k=1) ^n C_n ^k (((−1)^k )/k) = Σ_(k=1) ^n (1/k)  b.      Σ_(k=1) ^n C_n ^k  (((−1)^k )/(2k+1)) = (4^n /((2n+1)C_(2n) ^n ))
Provethat:nNa.nk=1Cnk(1)kk=nk=11kb.nk=1Cnk(1)k2k+1=4n(2n+1)C2nn
Answered by Dwaipayan Shikari last updated on 14/Jun/21
Σ_(k=1) ^n C_n ^k x^k =(1+x)^k −1  ⇒Σ_(k=1) ^n C_n ^k x^(k−1) =(((1+x)^n  −1)/x)⇒Σ_(k=1) ^n C_n ^k (((−1)^k )/k)=∫_0 ^(−1) (((1+x)^n −1)/x)dx  =∫_0 ^1 (((1−u)^n −1)/u)du=−∫_0 ^1 ((1−u^n )/(1−u))du=−H_n
nk=1Cnkxk=(1+x)k1nk=1Cnkxk1=(1+x)n1xnk=1Cnk(1)kk=01(1+x)n1xdx=01(1u)n1udu=011un1udu=Hn
Answered by mathmax by abdo last updated on 14/Jun/21
1) let p(x)=Σ_(k=1) ^n  C_n ^k  (((−1)^k )/k) x^k  ⇒p^′ (x)=Σ_(k=1) ^n  C_n ^k (−1)^k  x^(k−1)   =(1/x)Σ_(k=1) ^n  C_n ^k (−1)^k  x^k  =(1/x)(Σ_(k=0) ^n  C_n ^k (−1)^k  x^k −1)  =(1/x)( (1−x)^n −1) ⇒p(x)=∫_0 ^x  (((1−t)^n −1)/t)dt +K  K=p(0)=0 ⇒p(x)=∫_0 ^x  (((1−t−1)( 1+(1−t)+(1−t)^2 +....+(1−t)^(n−1) ))/t)dt  =−∫_0 ^x  Σ_(k=0) ^(n−1) (1−t)^k  dt =Σ_(k=0) ^(n−1) [(1/(k+1))(1−t)^(k+1) ]_0 ^x   =Σ_(k=0) ^(n−1) (1/(k+1))( (1−x)^(k+1) −1)=p(x) ⇒  Σ_(k=1) ^n  C_n ^k  (((−1)^k )/k)=p(1) =−Σ_(k=0) ^(n−1)  (1/(k+1))=−Σ_(k=1) ^n  (1/k)=−H_n
1)letp(x)=k=1nCnk(1)kkxkp(x)=k=1nCnk(1)kxk1=1xk=1nCnk(1)kxk=1x(k=0nCnk(1)kxk1)=1x((1x)n1)p(x)=0x(1t)n1tdt+KK=p(0)=0p(x)=0x(1t1)(1+(1t)+(1t)2+.+(1t)n1)tdt=0xk=0n1(1t)kdt=k=0n1[1k+1(1t)k+1]0x=k=0n11k+1((1x)k+11)=p(x)k=1nCnk(1)kk=p(1)=k=0n11k+1=k=1n1k=Hn
Answered by mathmax by abdo last updated on 15/Jun/21
2)let p(x)=Σ_(k=1) ^n  C_n ^k  (((−1)^k )/(2k+1))x^(2k+1)  ⇒  p^′ (x)=Σ_(k=1) ^n  C_n ^k  (−1)^k  (x^2 )^k  =(1−x^2 )^n −1 ⇒  p(x)=∫_0 ^x ((1−t^2 )^n −1)dt +K    k=p(0)=0 ⇒p(x)=∫_0 ^x (1−t^2 )^n  dt−x  ⇒p(1)=∫_0 ^1 (1−t^2 )^n dt−1  ∫_0 ^1 (1−t^2 )^n  dt =_(t=sinx)   ∫_0 ^(π/2) cos^(2n) x cosx dx  =∫_0 ^(π/2)  cos^(2n+1) xdx =∫_0 ^(π/2)  cos^(2n+1) x sin^o x dx  2p−1=2n+1 ⇒2p=2n+2 ⇒p=n+1  2q−1=0 ⇒q=(1/2) ⇒  ∫_0 ^(π/2)  cos^(2n+1) xdx =∫_0 ^(π/2) cos^(2(n+1)−1) sin^(2(1/2)−1) xdx  =(1/2)B(n+1,(1/2))=(1/2)((Γ(n+1)Γ((1/2)))/(Γ(n+(3/2))))=((n!(√π))/(2Γ(n+(3/2))))  ..be continued....
2)letp(x)=k=1nCnk(1)k2k+1x2k+1p(x)=k=1nCnk(1)k(x2)k=(1x2)n1p(x)=0x((1t2)n1)dt+Kk=p(0)=0p(x)=0x(1t2)ndtxp(1)=01(1t2)ndt101(1t2)ndt=t=sinx0π2cos2nxcosxdx=0π2cos2n+1xdx=0π2cos2n+1xsinoxdx2p1=2n+12p=2n+2p=n+12q1=0q=120π2cos2n+1xdx=0π2cos2(n+1)1sin2121xdx=12B(n+1,12)=12Γ(n+1)Γ(12)Γ(n+32)=n!π2Γ(n+32)..becontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *