Prove-that-n-N-a-k-1-n-C-n-k-1-k-k-k-1-n-1-k-b-k-1-n-C-n-k-1-k-2k-1-4-n-2n-1-C-2n-n- Tinku Tara June 3, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 143461 by Willson last updated on 14/Jun/21 Provethat:∀n∈N∗a.∑nk=1Cnk(−1)kk=∑nk=11kb.∑nk=1Cnk(−1)k2k+1=4n(2n+1)C2nn Answered by Dwaipayan Shikari last updated on 14/Jun/21 ∑nk=1Cnkxk=(1+x)k−1⇒∑nk=1Cnkxk−1=(1+x)n−1x⇒∑nk=1Cnk(−1)kk=∫0−1(1+x)n−1xdx=∫01(1−u)n−1udu=−∫011−un1−udu=−Hn Answered by mathmax by abdo last updated on 14/Jun/21 1)letp(x)=∑k=1nCnk(−1)kkxk⇒p′(x)=∑k=1nCnk(−1)kxk−1=1x∑k=1nCnk(−1)kxk=1x(∑k=0nCnk(−1)kxk−1)=1x((1−x)n−1)⇒p(x)=∫0x(1−t)n−1tdt+KK=p(0)=0⇒p(x)=∫0x(1−t−1)(1+(1−t)+(1−t)2+….+(1−t)n−1)tdt=−∫0x∑k=0n−1(1−t)kdt=∑k=0n−1[1k+1(1−t)k+1]0x=∑k=0n−11k+1((1−x)k+1−1)=p(x)⇒∑k=1nCnk(−1)kk=p(1)=−∑k=0n−11k+1=−∑k=1n1k=−Hn Answered by mathmax by abdo last updated on 15/Jun/21 2)letp(x)=∑k=1nCnk(−1)k2k+1x2k+1⇒p′(x)=∑k=1nCnk(−1)k(x2)k=(1−x2)n−1⇒p(x)=∫0x((1−t2)n−1)dt+Kk=p(0)=0⇒p(x)=∫0x(1−t2)ndt−x⇒p(1)=∫01(1−t2)ndt−1∫01(1−t2)ndt=t=sinx∫0π2cos2nxcosxdx=∫0π2cos2n+1xdx=∫0π2cos2n+1xsinoxdx2p−1=2n+1⇒2p=2n+2⇒p=n+12q−1=0⇒q=12⇒∫0π2cos2n+1xdx=∫0π2cos2(n+1)−1sin212−1xdx=12B(n+1,12)=12Γ(n+1)Γ(12)Γ(n+32)=n!π2Γ(n+32)..becontinued…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lim-x-1-x-1-ln-x-2-x-Next Next post: Question-12394 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.