Menu Close

Prove-that-n-N-H-2-n-1-n-2-where-H-m-r-1-m-1-r-




Question Number 2112 by Yozzi last updated on 03/Nov/15
Prove that, ∀n∈N,  H(2^n )≥1+(n/2)  where H(m)=Σ_(r=1) ^m (1/r).
Provethat,nN,H(2n)1+n2whereH(m)=mr=11r.
Commented by 123456 last updated on 03/Nov/15
n=0⇒H(2^n )=H(1)=1≥1+(0/2)  n=1⇒H(2^n )=H(2)=(3/2)≥1+(1/2)
n=0H(2n)=H(1)=11+02n=1H(2n)=H(2)=321+12
Answered by 123456 last updated on 03/Nov/15
H(m)=1+(1/2)+∙∙∙+(1/m)              <1+(1/2)+∙∙∙+(1/2)  m>2⇒(1/m)<(1/2)              <1+((m−1)/2)  H(m)>1+(1/m)+∙∙∙+(1/m)              >1+((m−1)/m)  1+((m−1)/m)<H(m)<1+((m−1)/2)  −−−−−−−  continue
H(m)=1+12++1m<1+12++12m>21m<12<1+m12H(m)>1+1m++1m>1+m1m1+m1m<H(m)<1+m12continue
Answered by prakash jain last updated on 04/Nov/15
H(1)=1  H(2^1 )=1+(1/2)=(3/2)≥((1+1)/2)  H(2^2 )=H(2)+(1/3)+(1/4)≥(3/2)+(1/4)+(1/4)=(3/2)+(1/2)=((1+3)/2)  assume H(2^n )≥((1+n)/2)  H(2^n )=H(2^n )+(1/(2^n +1))+(1/(2^n +2))+...+(1/2^(n+1) )  ≥((1+n)/2)+(1/2^(n+1) )+..+(1/2^(n+1) )=((1+n)/2)+(2^n /2^(n+1) )  =((1+n)/2)+(1/2)=((1+(n+1))/2)  H(2^n )≥((1+n)/2)⇒H(2^(n+1) )≥((1+(n+1))/2)  Result follows by induction.
H(1)=1H(21)=1+12=321+12H(22)=H(2)+13+1432+14+14=32+12=1+32assumeH(2n)1+n2H(2n)=H(2n)+12n+1+12n+2++12n+11+n2+12n+1+..+12n+1=1+n2+2n2n+1=1+n2+12=1+(n+1)2H(2n)1+n2H(2n+1)1+(n+1)2Resultfollowsbyinduction.

Leave a Reply

Your email address will not be published. Required fields are marked *