Prove-that-n-N-H-2-n-1-n-2-where-H-m-r-1-m-1-r- Tinku Tara June 3, 2023 Algebra 0 Comments FacebookTweetPin Question Number 2112 by Yozzi last updated on 03/Nov/15 Provethat,∀n∈N,H(2n)⩾1+n2whereH(m)=∑mr=11r. Commented by 123456 last updated on 03/Nov/15 n=0⇒H(2n)=H(1)=1⩾1+02n=1⇒H(2n)=H(2)=32⩾1+12 Answered by 123456 last updated on 03/Nov/15 H(m)=1+12+⋅⋅⋅+1m<1+12+⋅⋅⋅+12m>2⇒1m<12<1+m−12H(m)>1+1m+⋅⋅⋅+1m>1+m−1m1+m−1m<H(m)<1+m−12−−−−−−−continue Answered by prakash jain last updated on 04/Nov/15 H(1)=1H(21)=1+12=32⩾1+12H(22)=H(2)+13+14⩾32+14+14=32+12=1+32assumeH(2n)⩾1+n2H(2n)=H(2n)+12n+1+12n+2+…+12n+1⩾1+n2+12n+1+..+12n+1=1+n2+2n2n+1=1+n2+12=1+(n+1)2H(2n)⩾1+n2⇒H(2n+1)⩾1+(n+1)2Resultfollowsbyinduction. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lets-f-R-2-R-does-f-x-x-0-x-f-y-dy-Next Next post: CALCULUS-lim-n-n-ln-2-k-1-n-1-n-k- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.