Question Number 73041 by mathmax by abdo last updated on 05/Nov/19
$${prove}\:{that}\:\forall{n}\in\:{N}\:\:\sum_{{k}=\mathrm{0}} ^{\mathrm{2}{n}} \:\left(−\mathrm{1}\right)^{{k}} \:\left({C}_{\mathrm{2}{n}} ^{{k}} \right)^{\mathrm{2}} \:=\left(−\mathrm{1}\right)^{{n}} \:{C}_{\mathrm{2}{n}} ^{{n}} \\ $$
Commented by mathmax by abdo last updated on 06/Nov/19
$${let}\:{p}\left({x}\right)=\left(\mathrm{1}+{x}\right)^{\mathrm{2}{n}} \:{and}\:{q}\left({x}\right)=\left(\mathrm{1}−{x}\right)^{\mathrm{2}{n}} \:\Rightarrow \\ $$$${p}\left({x}\right).{q}\left({x}\right)=\left(\sum_{{k}=\mathrm{0}} ^{\mathrm{2}{n}} \:{C}_{\mathrm{2}{n}} ^{{k}} \:{x}^{{k}} \right)\left(\sum_{{k}=\mathrm{0}} ^{\mathrm{2}{n}} \:{C}_{\mathrm{2}{n}} ^{{k}} \left(−\mathrm{1}\right)^{{k}} \:{x}^{{k}} \right) \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\mathrm{2}{n}} \:{C}_{{k}} {x}^{{k}} \:{with}\:{C}_{{k}} =\sum_{{i}+{j}={k}} {a}_{{i}} {b}_{{j}} =\sum_{{i}=\mathrm{0}} ^{{k}} \:{a}_{{i}} {b}_{{k}−{i}} \\ $$$$=\sum_{{i}=\mathrm{0}} ^{{k}} {C}_{\mathrm{2}{n}} ^{{i}} \left(−\mathrm{1}\right)^{{k}−{i}} \:{C}_{\mathrm{2}{n}} ^{{k}−{i}} \:\:\Rightarrow{the}\:{coefficient}\:{of}\:{x}^{\mathrm{2}{n}} \:{is} \\ $$$${C}_{\mathrm{2}{n}} =\sum_{{i}=\mathrm{0}} ^{\mathrm{2}{n}} \:{C}_{\mathrm{2}{n}} ^{{i}} \left(−\mathrm{1}\right)^{\mathrm{2}{n}−{i}} \:{C}_{\mathrm{2}{n}} ^{\mathrm{2}{n}−{i}} \:=\sum_{{i}=\mathrm{0}} ^{\mathrm{2}{n}} \left(−\mathrm{1}\right)^{{i}} \left({C}_{\mathrm{2}{n}} ^{{i}} \right)^{\mathrm{2}} \:{also}\:{we}\:{have} \\ $$$${p}\left({x}\right){q}\left({x}\right)=\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}{n}} \:=\sum_{{k}=\mathrm{0}} ^{\mathrm{2}{n}} \left(−\mathrm{1}\right)^{{k}} {C}_{\mathrm{2}{n}} ^{{k}} \:{x}^{\mathrm{2}{k}} \:\:\Rightarrow{the}\:{coefficient}\:{of}\:{x}^{\mathrm{2}{n}} {is} \\ $$$${is}\:\left(−\mathrm{1}\right)^{{n}} \:{C}_{\mathrm{2}{n}} ^{{n}} \:\Rightarrow\:\sum_{{i}=\mathrm{0}} ^{\mathrm{2}{n}} \:\left(−\mathrm{1}\right)^{{i}} \left({C}_{\mathrm{2}{n}} ^{{i}} \right)^{\mathrm{2}} \:=\left(−\mathrm{1}\right)^{{n}} \:{C}_{\mathrm{2}{n}} ^{{n}} \\ $$
Answered by mind is power last updated on 05/Nov/19
$$\mathrm{let}\:\mathrm{p}\left(\mathrm{x}\right)=\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{2n}} \\ $$$$\mathrm{Q}\left(\mathrm{x}\right)=\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{2n}} \\ $$$$\mathrm{p}\left(\mathrm{x}\right)=\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\mathrm{C}_{\mathrm{2n}} ^{\mathrm{k}} \mathrm{X}^{\mathrm{k}} \\ $$$$\mathrm{Q}\left(\mathrm{x}\right)=\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\mathrm{C}_{\mathrm{n}} ^{\mathrm{k}} \left(−\mathrm{x}\right)^{\mathrm{k}} \\ $$$$\mathrm{lets}\:\mathrm{find}\:\mathrm{coeficient}\:\mathrm{of}\:\mathrm{X}^{\mathrm{2n}} \:\mathrm{in}\:\mathrm{p}.\mathrm{Q} \\ $$$$\mathrm{P},\mathrm{Q}=\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{2n}} {\sum}}\mathrm{C}_{\mathrm{2n}} ^{\mathrm{k}} \left(−\mathrm{1}\right)^{\mathrm{k}} \mathrm{x}^{\mathrm{k}} .\underset{\mathrm{j}=\mathrm{0}} {\overset{\mathrm{2n}} {\sum}}\mathrm{C}_{\mathrm{2n}} ^{\mathrm{j}} \mathrm{x}^{\mathrm{j}} \\ $$$$\Rightarrow\mathrm{k}+\mathrm{j}=\mathrm{2n} \\ $$$$=\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{2n}} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{k}} \mathrm{C}_{\mathrm{2n}} ^{\mathrm{k}} .\mathrm{C}_{\mathrm{2n}} ^{\mathrm{2n}−\mathrm{k}} =\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{2n}} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{k}} \left(\mathrm{C}_{\mathrm{2n}} ^{\mathrm{k}} \right)^{\mathrm{2}} \\ $$$$\mathrm{p}.\mathrm{Q}=\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2n}} \\ $$$$\mathrm{coeficient}\:\mathrm{of}\:\mathrm{X}^{\mathrm{2n}} \mathrm{isC}_{\mathrm{2n}} ^{\mathrm{n}} .\left(−\mathrm{1}\right)^{\mathrm{n}} \\ $$$$\Rightarrow\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{2n}} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{k}} \left(\mathrm{C}_{\mathrm{2n}} ^{\mathrm{k}} \right)^{\mathrm{2}} =\left(−\mathrm{1}\right)^{\mathrm{n}} .\mathrm{C}_{\mathrm{2n}} ^{\mathrm{n}} \\ $$