Menu Close

prove-that-n-N-k-0-n-k-C-2n-n-k-nC-2n-1-n-




Question Number 73046 by mathmax by abdo last updated on 05/Nov/19
prove that ∀n ∈N    Σ_(k=0) ^n  k C_(2n) ^(n+k)  =nC_(2n−1) ^n
provethatnNk=0nkC2nn+k=nC2n1n
Answered by mind is power last updated on 06/Nov/19
Σ_(k=0) ^n C_(2n) ^(k+n) =Σ_(k=0) ^n C_(2n) ^(n−k) =Σ_(k=0) ^n C_(2n) ^k   Σ_(k=0) ^(k=n) C_(2n) ^(k+n) =Σ_(k=n) ^(2n) C_(2n) ^k   ⇒Σ_(k=0) ^n C_(2n) ^k +Σ_(k=n) ^(2n) C_(2n) ^k =Σ_(k=0) ^(2n) C_(2n) ^k +C_(2n) ^n =2^(2n) +C_(2n) ^n   ⇒Σ_(k=0) ^n C_(2n) ^(k+n) =2^(2n−1) +(C_(2n) ^n /2)  Σ_(k=0) ^n kC_(2n) ^(k+n) =Σ_(k=0) ^n (k+n−n)C_(2n) ^(n+k) =Σ_(k=0) ^n (k+n)C_(2n) ^(n+k) −nΣ_(k=0) ^n C_(2n) ^(k+n)   Σ(k+n)C_(2n) ^(n+k) =Σ_(k=0) ^n (k+n).((2n!)/((k+n)!.(n−k)!))  =Σ_(k=0) ^n .((2n.(2n−1)!)/((n+k−1)!.(2n−1−(n+k−1)!))=2nΣ_(k=0) ^n C_(2n−1) ^(n+k−1)   Σ_(k=0) ^n C_(2n−1) ^(n+k−1) =Σ_(k=0) ^n C_(2n−1) ^(n−k)   Σ_(k=0) ^n C_(2n−1) ^(n+k−1) +Σ_(k=0) ^n C_(2n−1) ^(n−k) =Σ_(j=0) ^(2n−1) C_(2n−1) ^j +C_(2n−1) ^n +C_(2n−1) ^(n−1)   ⇒Σ_(k=0) ^n C_(2n−1) ^(n+k−1) =(1/2)(2^(2n−1) +(C_(2n−1) ^n +C_(2n−1) ^(n−1) )  =2^(2n−2) +(C_(2n) ^n /2)  Σ(k+n)C_(2n−1) ^(n+k) =2n.(2^(n−2) +(C_(2n) ^n /2))  ⇒Σ_(k=0) ^n kC_(2n) ^(n+k) =Σ_(k=0) ^n (k+n)C_(2n) ^(n+k) −nΣ_(k=0) ^n C_(2n) ^(n+k)   =2n(2^(n−2) +(C_(2n) ^n /2))−n.(2^(n−1) +(C_(2n) ^n /2))  =(n/2).C_(2n) ^n =(n/2) C_(2n) ^n =(n/2).((2n!)/(n!.n!))=((n.2n.(2n−1)!)/(2.n.(n−1)!.n!))=((n.(2n−1)!)/(n!.(2n−1−n)!))  =nC_(2n−1) ^n   ⇒Σ_(k=0) ^n kC_(2n) ^(k+n) =nC_(2n−1) ^n
nk=0C2nk+n=nk=0C2nnk=nk=0C2nkk=nk=0C2nk+n=2nk=nC2nknk=0C2nk+2nk=nC2nk=2nk=0C2nk+C2nn=22n+C2nnnk=0C2nk+n=22n1+C2nn2nk=0kC2nk+n=nk=0(k+nn)C2nn+k=nk=0(k+n)C2nn+knnk=0C2nk+nΣ(k+n)C2nn+k=nk=0(k+n).2n!(k+n)!.(nk)!=nk=0.2n.(2n1)!(n+k1)!.(2n1(n+k1)!=2nnk=0C2n1n+k1nk=0C2n1n+k1=nk=0C2n1nknk=0C2n1n+k1+nk=0C2n1nk=2n1j=0C2n1j+C2n1n+C2n1n1nk=0C2n1n+k1=12(22n1+(C2n1n+C2n1n1)=22n2+C2nn2Σ(k+n)C2n1n+k=2n.(2n2+C2nn2)nk=0kC2nn+k=nk=0(k+n)C2nn+knnk=0C2nn+k=2n(2n2+C2nn2)n.(2n1+C2nn2)=n2.C2nn=n2C2nn=n2.2n!n!.n!=n.2n.(2n1)!2.n.(n1)!.n!=n.(2n1)!n!.(2n1n)!=nC2n1nnk=0kC2nk+n=nC2n1n

Leave a Reply

Your email address will not be published. Required fields are marked *