Menu Close

Prove-that-n-n-k-1-1-p-k-n-Euler-totient-function-




Question Number 142880 by Dwaipayan Shikari last updated on 06/Jun/21
 Prove that 𝛗(n)=nΠ_k (1−(1/p_k ))  φ(n):Euler totient function
Provethat\boldsymbolϕ(n)=nk(11pk)ϕ(n):Eulertotientfunction
Answered by Snail last updated on 06/Jun/21
I am considering that u know φ(n) is multiplicative  function i.e φ(ab)=φ(a)φ(b)..where a and b   are coprime  Let p_1 .............p_k  are distinct primd factors of  n  n=p_1 ^k_1  .........p_k ^k_r        [here r=k as k=number of terms]  φ(n)=φ(p_1 ^k_1  .....p_k ^k_r  )=φ(p_1 ^k_1  )......φ(p_k ^k_r  )....(1)  Now the number of integers which are not  coprime to p^(k ) ...(p.1),(p.2),(p.3),........(p.p^(k−1) )  φ(p^k )=numbdr of integers coprimd to p^k and<p^k               = p^k −p^(k−1) =p^k (1−(1/p))  Now using this in( 1)  =p_1 ^k_1  (1−(1/p_1 ))p_2 ^k_2  (1−(1/p_2 ))...p_k ^k_r  (1−(1/p_r ))    =p_1 ^k_1  p_2 ^k_2  .....p_r ^k_r  (1−(1/p_1 )).....(1−(1/p_r ))  =n(1−(1/p_1 ))(1−(1/p_2 ))....(1−(1/p_k ))  Proved....
Iamconsideringthatuknowϕ(n)ismultiplicativefunctioni.eϕ(ab)=ϕ(a)ϕ(b)..whereaandbarecoprimeLetp1.pkaredistinctprimdfactorsofnn=p1k1pkkr[herer=kask=numberofterms]ϕ(n)=ϕ(p1k1..pkkr)=ϕ(p1k1)ϕ(pkkr).(1)Nowthenumberofintegerswhicharenotcoprimetopk(p.1),(p.2),(p.3),..(p.pk1)ϕ(pk)=numbdrofintegerscoprimdtopkand<pk=pkpk1=pk(11p)Nowusingthisin(1)=p1k1(11p1)p2k2(11p2)pkkr(11pr)=p1k1p2k2..prkr(11p1)..(11pr)=n(11p1)(11p2).(11pk)Proved.
Commented by Dwaipayan Shikari last updated on 07/Jun/21
Thanks
ThanksThanks

Leave a Reply

Your email address will not be published. Required fields are marked *