Prove-that-n-n-k-1-1-p-k-n-Euler-totient-function- Tinku Tara June 3, 2023 Number Theory 0 Comments FacebookTweetPin Question Number 142880 by Dwaipayan Shikari last updated on 06/Jun/21 Provethat\boldsymbolϕ(n)=n∏k(1−1pk)ϕ(n):Eulertotientfunction Answered by Snail last updated on 06/Jun/21 Iamconsideringthatuknowϕ(n)ismultiplicativefunctioni.eϕ(ab)=ϕ(a)ϕ(b)..whereaandbarecoprimeLetp1………….pkaredistinctprimdfactorsofnn=p1k1………pkkr[herer=kask=numberofterms]ϕ(n)=ϕ(p1k1…..pkkr)=ϕ(p1k1)……ϕ(pkkr)….(1)Nowthenumberofintegerswhicharenotcoprimetopk…(p.1),(p.2),(p.3),……..(p.pk−1)ϕ(pk)=numbdrofintegerscoprimdtopkand<pk=pk−pk−1=pk(1−1p)Nowusingthisin(1)=p1k1(1−1p1)p2k2(1−1p2)…pkkr(1−1pr)=p1k1p2k2…..prkr(1−1p1)…..(1−1pr)=n(1−1p1)(1−1p2)….(1−1pk)Proved…. Commented by Dwaipayan Shikari last updated on 07/Jun/21 ThanksThanks Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: if-sin-f-x-dx-g-x-cos-f-x-dx-Next Next post: Evaluate-0-1-2-4x-2-1-x-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.