Menu Close

Prove-that-n-N-k-1-n-1-sin-kpi-2n-k-1-n-1-cos-kpi-2n-




Question Number 142698 by Willson last updated on 04/Jun/21
Prove that ∀n∈N^∗       Π_(k=1) ^(n−1) sin(((kπ)/(2n))) = Π_(k=1) ^(n−1) cos(((kπ)/(2n)))
ProvethatnNn1k=1sin(kπ2n)=n1k=1cos(kπ2n)
Answered by Ar Brandon last updated on 04/Jun/21
Π_(k=1) ^(n−1) sin(((kπ)/(2n)))=Π_(k=1) ^(n−1) cos((π/2)−((kπ)/(2n)))=Π_(k=1) ^(n−1) cos((((n−k)π)/(2n)))                        =cos(((n−1)/(2n))π)cos(((n−2)/(2n))π)∙∙∙cos((2/(2n))π)cos((1/(2n))π)                        =cos((1/(2n))π)cos((2/(2n))π)∙∙∙cos(((n−2)/(2n))π)cos(((n−1)/(2n))π)                        =Π_(k=1) ^(n−1) cos((k/(2n))π)
n1k=1sin(kπ2n)=n1k=1cos(π2kπ2n)=n1k=1cos((nk)π2n)=cos(n12nπ)cos(n22nπ)cos(22nπ)cos(12nπ)=cos(12nπ)cos(22nπ)cos(n22nπ)cos(n12nπ)=n1k=1cos(k2nπ)

Leave a Reply

Your email address will not be published. Required fields are marked *