Menu Close

Prove-that-n-N-n-1-n-lnt-dt-ln-n-1-2-




Question Number 141409 by Willson last updated on 18/May/21
Prove that   ∀n∈N    ∫^( n+1) _n lnt dt ≤ ln(n+(1/2))
ProvethatnNnn+1lntdtln(n+12)
Answered by TheSupreme last updated on 19/May/21
∫ln(t)=xln(t)−x  ∫_n ^(n+1) ...=(n+1)ln(n+1)−n−1−nln(n)+n  =nln(n+1)+ln(n+1)−nln(n)−1  =ln(1+(1/n))^n +ln(n+1)−1  for n>1 ln(t) is monotone and positive so ∫ is monotone  max(∫)=lim_x  ln(1+(1/n))^n +ln(n+1)−1=  =1+ln(n+1)−1=ln(n+1)  ∫_n ^(n+1) ln(t)dt≤ln(n+1)
ln(t)=xln(t)xnn+1=(n+1)ln(n+1)n1nln(n)+n=nln(n+1)+ln(n+1)nln(n)1=ln(1+1n)n+ln(n+1)1forn>1ln(t)ismonotoneandpositivesoismonotonemax()=limxln(1+1n)n+ln(n+1)1==1+ln(n+1)1=ln(n+1)nn+1ln(t)dtln(n+1)

Leave a Reply

Your email address will not be published. Required fields are marked *