Menu Close

prove-that-n-p-N-N-1-k-0-p-1-k-C-n-k-1-p-C-n-1-p-2-p-q-N-2-k-0-p-C-p-q-k-C-p-q-k-p-k-2-p-C-p-q-p-




Question Number 73040 by mathmax by abdo last updated on 05/Nov/19
prove that  ∀(n,p)∈N^★ ×N  1)Σ_(k=0) ^p  (−1)^k  C_n ^k  =(−1)^p  C_(n−1) ^p   2)∀(p,q)∈N^2     Σ_(k=0) ^p  C_(p+q) ^k  C_(p+q−k) ^(p−k)   =2^p  C_(p+q) ^p
provethat(n,p)N×N1)k=0p(1)kCnk=(1)pCn1p2)(p,q)N2k=0pCp+qkCp+qkpk=2pCp+qp
Answered by mind is power last updated on 06/Nov/19
1) recursion  2 nd  lets A=[1,,,p+q]  in A we can get  C_(p+q) ^p  set withe p elements  the number of idont now the nam in inglish  ′′A={1,2}/P(A)={∅,{1},{2},{1,2}}′′  if A is card p⇒P(A)=2^p   sl the number all partition of set withe p element is 2^p C_(p+q) ^p   we can chose this element  we pick k element in p+q  and    p−k in  p+q−k   ⇒=Σ_(k=0) ^p C_(p+q) ^k C_(p+q−k) ^(p−k) =2^p C_(p+q) ^p
1)recursion2ndletsA=[1,,,p+q]inAwecangetCp+qpsetwithepelementsthenumberofidontnowthenamininglishA={1,2}/P(A)={,{1},{2},{1,2}}ifAiscardpP(A)=2pslthenumberallpartitionofsetwithepelementis2pCp+qpwecanchosethiselementwepickkelementinp+qandpkinp+qk⇒=pk=0Cp+qkCp+qkpk=2pCp+qp

Leave a Reply

Your email address will not be published. Required fields are marked *