Question Number 69231 by ~ À ® @ 237 ~ last updated on 21/Sep/19
$${Prove}\:{that}\:\:\underset{{p}=\mathrm{0}} {\overset{\infty} {\sum}}\:\:\frac{\left(−\mathrm{1}\right)^{{p}} }{\mathrm{4}{p}+\mathrm{1}}\:=\:\frac{\pi−{argcoth}\left(\sqrt{\mathrm{2}}\:\right)}{\mathrm{4}\sqrt{\mathrm{2}}}\:\:{and} \\ $$$$\underset{{p}=\mathrm{0}} {\overset{\infty\:} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{{p}} }{\mathrm{4}{p}+\mathrm{3}}\:=\:\frac{\pi+{argcoth}\left(\sqrt{\mathrm{2}}\:\right)}{\mathrm{4}\sqrt{\mathrm{2}}\:}\:\:\: \\ $$
Commented by mathmax by abdo last updated on 21/Sep/19
$${let}\:{s}\left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{4}{n}+\mathrm{1}}{x}^{\mathrm{4}{n}+\mathrm{1}} \:{with}\:\:\mid{x}\mid<\mathrm{1}\:\Rightarrow{s}^{'} \left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{4}{n}} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−{x}^{\mathrm{4}} \right)^{{n}} \:=\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{4}} }\:\Rightarrow{s}\left({x}\right)\:=\int_{\mathrm{0}} ^{{x}} \:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} }\:+{c} \\ $$$${c}={s}\left(\mathrm{0}\right)=\mathrm{0}\:\Rightarrow{s}\left({x}\right)\:=\int_{\mathrm{0}} ^{{x}} \:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} }\:{and}\:\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{4}{n}+\mathrm{1}}\:={s}\left(\mathrm{1}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dt}}{{t}^{\mathrm{4}} \:+\mathrm{1}} \\ $$$${let}\:{decompose}\:{F}\left({t}\right)=\frac{\mathrm{1}}{{t}^{\mathrm{4}} \:+\mathrm{1}}\:\Rightarrow{F}\left({t}\right)=\frac{\mathrm{1}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} −\mathrm{2}{t}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\left({t}^{\mathrm{2}} +\mathrm{1}+\sqrt{\mathrm{2}}{t}\right)\left({t}^{\mathrm{2}} \:+\mathrm{1}−\sqrt{\mathrm{2}}{t}\right)}\:=\frac{{at}\:+{b}}{{t}^{\mathrm{2}} +\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\:+\frac{{ct}+{d}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}} \\ $$$${F}\left(−{t}\right)={F}\left({t}\right)\:\Rightarrow\frac{−{at}+{b}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\:+\frac{−{ct}+{d}}{{t}^{\mathrm{2}} +\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\:={F}\left({t}\right)\:\Rightarrow \\ $$$${c}=−{a}\:\:{and}\:{d}={b}\:\Rightarrow \\ $$$${F}\left({t}\right)\:=\frac{{at}+{b}}{{t}^{\mathrm{2}} +\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\:+\frac{−{at}+{b}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}} \\ $$$${F}\left({o}\right)\:=\mathrm{1}\:=\mathrm{2}{b}\:\Rightarrow{b}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${F}\left(\mathrm{1}\right)\:=\frac{{a}+{b}}{\mathrm{2}+\sqrt{\mathrm{2}}}\:+\frac{−{a}+{b}}{\mathrm{2}−\sqrt{\mathrm{2}}}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\frac{\left(\mathrm{2}−\sqrt{\mathrm{2}}\right)\left({a}+{b}\right)+\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)\left(−{a}+{b}\right)}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\left(\mathrm{2}−\sqrt{\mathrm{2}}\right){a}\:+\left(\mathrm{2}−\sqrt{\mathrm{2}}\right){b}\:−\left(\mathrm{2}+\sqrt{\mathrm{2}}\right){a}+\left(\mathrm{2}+\sqrt{\mathrm{2}}\right){b}\:=\mathrm{1}\:\Rightarrow \\ $$$$−\mathrm{2}\sqrt{\mathrm{2}}{a}\:+\mathrm{2}\:=\mathrm{1}\:\Rightarrow{a}\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\Rightarrow \\ $$$${F}\left({t}\right)\:=\frac{\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}{t}\:+\frac{\mathrm{1}}{\mathrm{2}}}{{t}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\:+\frac{−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}{t}+\frac{\mathrm{1}}{\mathrm{2}}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\left\{\:\:\:\frac{{t}+\sqrt{\mathrm{2}}}{{t}^{\mathrm{2}} +\sqrt{\mathrm{2}}{t}+\mathrm{1}}\:−\frac{{t}−\sqrt{\mathrm{2}}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\right\}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{F}\left({t}\right){dt}\:=\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{2}{t}+\sqrt{\mathrm{2}}+\sqrt{\mathrm{2}}}{{t}^{\mathrm{2}} +\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}{dt}\:−\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{2}{t}−\sqrt{\mathrm{2}}−\sqrt{\mathrm{2}}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}\left[{ln}\left({t}^{\mathrm{2}} +\sqrt{\mathrm{2}}{t}\:+\mathrm{1}\right)\right]_{\mathrm{0}} ^{\mathrm{1}\:} \:\:+\frac{\mathrm{1}}{\mathrm{4}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{t}\:+\mathrm{1}} \\ $$$$−\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}\:\left[{ln}\left({t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:+\frac{\mathrm{1}}{\mathrm{4}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dt}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}\left\{{ln}\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)−{ln}\left(\mathrm{2}−\sqrt{\mathrm{2}}\right)\:+\frac{\mathrm{1}}{\mathrm{4}}\:\left\{\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\left(…\right){dt}\:+\int_{\mathrm{0}} ^{\mathrm{1}} \left(….\right){dt}\right\}\right. \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\mathrm{2}\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}{t}\:\:+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dt}}{\left({t}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}\:} +\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$=_{{t}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}=\frac{{u}}{\:\sqrt{\mathrm{2}}}} \:\:\:\:\mathrm{2}\int_{\mathrm{1}} ^{\mathrm{1}+\sqrt{\mathrm{2}}} \:\:\:\frac{\mathrm{1}}{{u}^{\mathrm{2}} \:+\mathrm{1}}\:\frac{{du}}{\:\sqrt{\mathrm{2}}}\:=\sqrt{\mathrm{2}}\left[{arctan}\left({u}\right)\right]_{\mathrm{1}} ^{\mathrm{1}+\sqrt{\mathrm{2}}} \\ $$$$=\sqrt{\mathrm{2}}\left\{{arctan}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)−\frac{\pi}{\mathrm{4}}\right\}\:=\sqrt{\mathrm{2}}\left\{\frac{\pi}{\mathrm{2}}\:−{arctan}\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)−\frac{\pi}{\mathrm{4}}\right\} \\ $$$$=\sqrt{\mathrm{2}}\left\{\frac{\pi}{\mathrm{4}}−\frac{\pi}{\mathrm{8}}\right\}\:=\sqrt{\mathrm{2}}×\frac{\pi}{\mathrm{8}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dt}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dt}}{\left({t}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{2}}}\:=_{{t}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}=\frac{{u}}{\:\sqrt{\mathrm{2}}}} \mathrm{2}\:\:\int_{−\mathrm{1}} ^{\sqrt{\mathrm{2}}−\mathrm{1}} \:\frac{\mathrm{1}}{{u}^{\mathrm{2}} \:+\mathrm{1}}\frac{{du}}{\:\sqrt{\mathrm{2}}} \\ $$$$=\sqrt{\mathrm{2}}\left[{arctan}\left({u}\right)\right]_{−\mathrm{1}} ^{\sqrt{\mathrm{2}}−\mathrm{1}} \:=\sqrt{\mathrm{2}}\left\{\frac{\pi}{\mathrm{8}}\:+\frac{\pi}{\mathrm{4}}\right\}\:=\sqrt{\mathrm{2}}×\frac{\mathrm{3}\pi}{\mathrm{8}}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{F}\left({t}\right){dt}\:=\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}{ln}\left(\frac{\mathrm{2}+\sqrt{\mathrm{2}}}{\mathrm{2}−\sqrt{\mathrm{2}}}\right)\:+\frac{\mathrm{1}}{\mathrm{4}}\left\{\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}}\:+\frac{\mathrm{3}\pi\sqrt{\mathrm{2}}}{\mathrm{8}}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}{ln}\left(\frac{\mathrm{4}+\mathrm{4}\sqrt{\mathrm{2}}+\mathrm{2}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{4}}\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{2}}\:=\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}{ln}\left(\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}\right)+\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}}\:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{4}{n}+\mathrm{1}}\:=\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}{ln}\left(\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}\right)\:+\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}} \\ $$