Menu Close

Prove-that-pi-4-k-0-1-k-2k-1-




Question Number 7621 by 314159 last updated on 06/Sep/16
Prove that   π=4Σ_(k=0) ^∞   (((−1)^k )/(2k+1))
Provethatπ=4k=0(1)k2k+1
Answered by prakash jain last updated on 26/Sep/16
Outline for the proof:  x<1  (1/(1+x^2 ))=1−x^2 +x^4 −x^6 +x^8 −+..  Integrate from 0 to 1.  ∫_0 ^1 (1/(1+x^2 ))=∫_0 ^1 1−x^2 +x^4 −x^6   [tan^(−1) x]_0 ^1 =[x−(x^3 /3)+(x^5 /5)−(x^7 /7)+−..]_0 ^1   (π/4)=1−(1/3)+(1/5)−(1/7)+−...  (π/4)=Σ_(k=0) ^∞  (((−1)^k )/(2k+1))
Outlinefortheproof:x<111+x2=1x2+x4x6+x8+..Integratefrom0to1.0111+x2=011x2+x4x6[tan1x]01=[xx33+x55x77+..]01π4=113+1517+π4=k=0(1)k2k+1

Leave a Reply

Your email address will not be published. Required fields are marked *