Menu Close

prove-that-pi-cotan-pi-lim-n-k-n-n-1-k-




Question Number 67532 by mathmax by abdo last updated on 28/Aug/19
prove that  π cotan(πα) =lim_(n→+∞)    Σ_(k=−n) ^n   (1/(α−k))
provethatπcotan(πα)=limn+k=nn1αk
Commented by ~ À ® @ 237 ~ last updated on 29/Aug/19
 Use the formulas  Σ_(−∞) ^∞ f(k)=−Σ_z_k  Res(f(z)πcotan(πz),z_k ) and Σ_(−∞) ^∞ (−1)^k f(k)=−Σ_z_k   Res(f(z)πcsc(πz),z_k )    [with  csc(πx)=(1/(sin(πx)))   So here f(k)=(1/(α−k))  and z_k =α  Σ_(−∞) ^∞  (1/(α−k)) =−Res(((πcotan(πz))/(α−z)),α)= −lim_(z→α)  ((((z−α)πcotan(πz))/(α−z)))=πcotan(πα)
Usetheformulasf(k)=zkRes(f(z)πcotan(πz),zk)and(1)kf(k)=zkRes(f(z)πcsc(πz),zk)[withcsc(πx)=1sin(πx)Soheref(k)=1αkandzk=α1αk=Res(πcotan(πz)αz,α)=limzα((zα)πcotan(πz)αz)=πcotan(πα)

Leave a Reply

Your email address will not be published. Required fields are marked *