Menu Close

prove-that-picotan-pi-1-n-1-2-2-n-2-with-R-Z-prove-also-that-for-t-0-cotan-t-1-t-n-1-2t-t-2-n-2-pi-2-




Question Number 68129 by mathmax by abdo last updated on 05/Sep/19
prove that πcotan(απ)=(1/α) +Σ_(n=1) ^∞  ((2α)/(α^2 −n^2 ))  with α ∈R−Z  .  prove also that   for t≠0  cotan(t) =(1/t) +Σ_(n=1) ^∞   ((2t)/(t^2 −n^2 π^2 ))
$${prove}\:{that}\:\pi{cotan}\left(\alpha\pi\right)=\frac{\mathrm{1}}{\alpha}\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{2}\alpha}{\alpha^{\mathrm{2}} −{n}^{\mathrm{2}} } \\ $$$${with}\:\alpha\:\in{R}−{Z}\:\:. \\ $$$${prove}\:{also}\:{that}\:\:\:{for}\:{t}\neq\mathrm{0} \\ $$$${cotan}\left({t}\right)\:=\frac{\mathrm{1}}{{t}}\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{2}{t}}{{t}^{\mathrm{2}} −{n}^{\mathrm{2}} \pi^{\mathrm{2}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *