Question Number 76367 by Rio Michael last updated on 26/Dec/19

Commented by mathmax by abdo last updated on 26/Dec/19

Commented by mathmax by abdo last updated on 26/Dec/19

Commented by Rio Michael last updated on 26/Dec/19

Commented by mathmax by abdo last updated on 28/Dec/19
![let f(x)=∣x∣ ,2π periodic even f(x) =(a_0 /2) +Σ_(n=1) ^∞ a_n cos(nx) a_n =(2/T)∫_([T]) ∣x∣ cos(nx) =(1/π)∫_(−π) ^π ∣x∣ cos(nx)dx =(2/π) ∫_0 ^π x cos(nx)dx ⇒(π/2)a_n =∫_0 ^π x cos(nx) =_(by parts) [(x/n)sin(nx)]_0 ^π −∫_0 ^π (1/n)sin(nx)dx =−(1/n)[−(1/n)cos(nx)]_0 ^π =(1/n^2 ){(−1)^n −1) ⇒ a_n =(2/(πn^2 )){ (−1)^n −1} a_0 =(2/π)×(π^2 /2)=π ⇒∣x∣ =(π/2) +(2/π)Σ_(n=1) ^∞ (((−1)^n −1)/n^2 )cos(nx) =(π/2) +(2/π)(−2) Σ_(p=0) ^∞ (1/((2p+1)^2 ))cos(2p+1)x =(π/2)−(4/π) Σ_(p=0) ^∞ ((cos(2p+1)x)/((2p+1)^2 )) x=0 ⇒(π/2)−(4/π) Σ_(p=0) ^∞ (1/((2p+1)^2 )) =0 ⇒(4/π)Σ_(p=0) ^∞ (1/((2p+1)^2 )) =(π/2) ⇒ Σ_(p=0) ^∞ (1/((2p+1)^2 )) =(π^2 /8) Σ_(n=1) ^∞ (1/n^2 ) =Σ_(n=1) ^∞ (1/(4n^2 )) +Σ_(n=0) ^∞ (1/((2n+1)^2 )) ⇒ (3/4) Σ_(n=1) ^∞ (1/n^2 ) =(π^2 /8) ⇒ Σ_(n=1) ^∞ (1/n^2 ) =(4/3)×(π^2 /8) =(π^2 /6) .](https://www.tinkutara.com/question/Q76611.png)