Menu Close

prove-that-r-1-1-r-2-pi-2-6-




Question Number 76367 by Rio Michael last updated on 26/Dec/19
prove that  Σ_(r=1) ^∞  (1/r^2 ) = (π^2 /6)
provethatr=11r2=π26
Commented by mathmax by abdo last updated on 26/Dec/19
not correct
notcorrect
Commented by mathmax by abdo last updated on 26/Dec/19
i think Σ_(r=1) ^∞  (1/r^2 )
ithinkr=11r2
Commented by Rio Michael last updated on 26/Dec/19
thanks i′ll correct that
thanksillcorrectthat
Commented by mathmax by abdo last updated on 28/Dec/19
let f(x)=∣x∣ ,2π periodic even  f(x) =(a_0 /2) +Σ_(n=1) ^∞  a_n cos(nx)  a_n =(2/T)∫_([T]) ∣x∣ cos(nx) =(1/π)∫_(−π) ^π  ∣x∣ cos(nx)dx  =(2/π) ∫_0 ^π  x cos(nx)dx ⇒(π/2)a_n =∫_0 ^π  x cos(nx)  =_(by parts)   [(x/n)sin(nx)]_0 ^π  −∫_0 ^π (1/n)sin(nx)dx  =−(1/n)[−(1/n)cos(nx)]_0 ^π  =(1/n^2 ){(−1)^n −1) ⇒  a_n =(2/(πn^2 )){ (−1)^n −1}  a_0 =(2/π)×(π^2 /2)=π ⇒∣x∣ =(π/2) +(2/π)Σ_(n=1) ^∞  (((−1)^n −1)/n^2 )cos(nx)  =(π/2) +(2/π)(−2) Σ_(p=0) ^∞  (1/((2p+1)^2 ))cos(2p+1)x  =(π/2)−(4/π) Σ_(p=0) ^∞   ((cos(2p+1)x)/((2p+1)^2 ))  x=0 ⇒(π/2)−(4/π) Σ_(p=0) ^∞  (1/((2p+1)^2 )) =0 ⇒(4/π)Σ_(p=0) ^∞  (1/((2p+1)^2 )) =(π/2) ⇒  Σ_(p=0) ^∞  (1/((2p+1)^2 )) =(π^2 /8)  Σ_(n=1) ^∞  (1/n^2 ) =Σ_(n=1) ^∞  (1/(4n^2 )) +Σ_(n=0) ^∞  (1/((2n+1)^2 )) ⇒  (3/4) Σ_(n=1) ^∞  (1/n^2 ) =(π^2 /8) ⇒ Σ_(n=1) ^∞  (1/n^2 ) =(4/3)×(π^2 /8) =(π^2 /6) .
letf(x)=∣x,2πperiodicevenf(x)=a02+n=1ancos(nx)an=2T[T]xcos(nx)=1πππxcos(nx)dx=2π0πxcos(nx)dxπ2an=0πxcos(nx)=byparts[xnsin(nx)]0π0π1nsin(nx)dx=1n[1ncos(nx)]0π=1n2{(1)n1)an=2πn2{(1)n1}a0=2π×π22=π⇒∣x=π2+2πn=1(1)n1n2cos(nx)=π2+2π(2)p=01(2p+1)2cos(2p+1)x=π24πp=0cos(2p+1)x(2p+1)2x=0π24πp=01(2p+1)2=04πp=01(2p+1)2=π2p=01(2p+1)2=π28n=11n2=n=114n2+n=01(2n+1)234n=11n2=π28n=11n2=43×π28=π26.

Leave a Reply

Your email address will not be published. Required fields are marked *