Menu Close

prove-that-r-k-n-r-1-2-n-n-1-show-with-a-diagram-that-the-volume-of-a-parallepipe-is-a-b-c-




Question Number 66803 by Rio Michael last updated on 19/Aug/19
 prove that  Σ_(r=k) ^n  r = (1/2)n(n+1)    show with a diagram that the volume of a parallepipe is   a.(b×c)
$$\:{prove}\:{that} \\ $$$$\underset{{r}={k}} {\overset{{n}} {\sum}}\:{r}\:=\:\frac{\mathrm{1}}{\mathrm{2}}{n}\left({n}+\mathrm{1}\right) \\ $$$$ \\ $$$${show}\:{with}\:{a}\:{diagram}\:{that}\:{the}\:{volume}\:{of}\:{a}\:{parallepipe}\:{is}\:\:\:{a}.\left({b}×{c}\right) \\ $$
Commented by JDamian last updated on 19/Aug/19
Did you mean “r=1”?
$${Did}\:{you}\:{mean}\:“{r}=\mathrm{1}''? \\ $$
Commented by Rio Michael last updated on 20/Aug/19
yes
$${yes} \\ $$
Commented by Cmr 237 last updated on 20/Aug/19
vraiment
$${vraiment} \\ $$
Answered by $@ty@m123 last updated on 20/Aug/19
S=1+2+3+.....+n  a=1, d=1  S=(n/2)[2a+(n−1)d]  S=(n/2)[2+n−1]  S=(1/2)n(n+1)
$${S}=\mathrm{1}+\mathrm{2}+\mathrm{3}+…..+{n} \\ $$$${a}=\mathrm{1},\:{d}=\mathrm{1} \\ $$$${S}=\frac{{n}}{\mathrm{2}}\left[\mathrm{2}{a}+\left({n}−\mathrm{1}\right){d}\right] \\ $$$${S}=\frac{{n}}{\mathrm{2}}\left[\mathrm{2}+{n}−\mathrm{1}\right] \\ $$$${S}=\frac{\mathrm{1}}{\mathrm{2}}{n}\left({n}+\mathrm{1}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *