Menu Close

Prove-that-S-x-y-z-R-3-x-2-y-2-z-2-is-a-surface-and-find-out-if-possible-the-tangent-plan-in-O-0-0-0-




Question Number 74301 by ~blr237~ last updated on 21/Nov/19
Prove that  S={(x,y,z)∈R^3 \ x^2 +y^2 =z^2  } is a surface   and find out if possible the tangent plan in O(0,0,0).
ProvethatS={(x,y,z)R3x2+y2=z2}isasurfaceandfindoutifpossiblethetangentplaninO(0,0,0).
Answered by mind is power last updated on 21/Nov/19
S−{(0,0,0)} is a surface   let fR^3 →R  f(x,y,z)=x^2 +y^2 −z^2   ⇒S=f^− (0)  df=(2x,2y,−2z)  ≠(0,0,0 ∀(x,y,z)∈R^3 −{(0,0,0)}  ⇒f is  Emersion in any point IR^3 −{(0,0,0)}  ⇒S−{(0,0,0)} is smothe manifold of  order 2   topoligacl definition of surfaces  in(0,0,0) gradf=0^→
S{(0,0,0)}isasurfaceletfR3Rf(x,y,z)=x2+y2z2S=f(0)df=(2x,2y,2z)(0,0,0(x,y,z)R3{(0,0,0)}fisEmersioninanypointIR3{(0,0,0)}S{(0,0,0)}issmothemanifoldoforder2topoligacldefinitionofsurfacesin(0,0,0)gradf=0

Leave a Reply

Your email address will not be published. Required fields are marked *