Prove-that-S-x-y-z-R-3-x-2-y-2-z-2-is-a-surface-and-find-out-if-possible-the-tangent-plan-in-O-0-0-0- Tinku Tara June 3, 2023 Coordinate Geometry 0 Comments FacebookTweetPin Question Number 74301 by ~blr237~ last updated on 21/Nov/19 ProvethatS={(x,y,z)∈R3∖x2+y2=z2}isasurfaceandfindoutifpossiblethetangentplaninO(0,0,0). Answered by mind is power last updated on 21/Nov/19 S−{(0,0,0)}isasurfaceletfR3→Rf(x,y,z)=x2+y2−z2⇒S=f−(0)df=(2x,2y,−2z)≠(0,0,0∀(x,y,z)∈R3−{(0,0,0)}⇒fisEmersioninanypointIR3−{(0,0,0)}⇒S−{(0,0,0)}issmothemanifoldoforder2topoligacldefinitionofsurfacesin(0,0,0)gradf=0→ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: x-3x-1-dx-Next Next post: If-z-1-z-2-and-z-3-are-the-vertices-of-a-right-angled-isos-celes-triangle-described-in-counter-clock-sense-and-right-angled-at-z-3-then-z-1-z-2-2-is-equal-to-A-z-1-z-3-z-3-z-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.