Question Number 143320 by mathdanisur last updated on 12/Jun/21
$${prove}\:{that}:\:\:{tan}^{\mathrm{2}} \mathrm{36}°\:+\:{tan}^{\mathrm{2}} \mathrm{72}°\:=\:\mathrm{5} \\ $$
Answered by Ar Brandon last updated on 12/Jun/21
$$\mathrm{tan}^{\mathrm{2}} \mathrm{36}°+\mathrm{tan}^{\mathrm{2}} \mathrm{72}°=\mathrm{tan}^{\mathrm{2}} \mathrm{36}°+\mathrm{cot}^{\mathrm{2}} \mathrm{18}° \\ $$$$=\left(\frac{\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}}{\:\sqrt{\mathrm{5}}+\mathrm{1}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{10}+\mathrm{2}\sqrt{\mathrm{5}}}}{\:\sqrt{\mathrm{5}}−\mathrm{1}}\right)^{\mathrm{2}} \\ $$$$=\frac{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{6}+\mathrm{2}\sqrt{\mathrm{5}}}+\frac{\mathrm{10}+\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{6}−\mathrm{2}\sqrt{\mathrm{5}}} \\ $$$$=\frac{\left(\mathrm{80}−\mathrm{32}\sqrt{\mathrm{5}}\right)+\left(\mathrm{80}+\mathrm{32}\sqrt{\mathrm{5}}\right)}{\mathrm{16}} \\ $$$$=\frac{\mathrm{160}}{\mathrm{16}}=\mathrm{10} \\ $$
Commented by mathdanisur last updated on 13/Jun/21
$${thanks}\:{Sir}.. \\ $$
Answered by MJS_new last updated on 13/Jun/21
$$\mathrm{it}'\mathrm{s}\:\mathrm{wrong} \\ $$
Answered by MJS_new last updated on 13/Jun/21
$$\mathrm{tan}^{\mathrm{2}} \:{x}\:+\mathrm{tan}^{\mathrm{2}} \:\mathrm{2}{x}\:=\mathrm{10} \\ $$$$\mathrm{tan}\:{x}\:={t} \\ $$$$\frac{{t}^{\mathrm{2}} \left({t}^{\mathrm{4}} −\mathrm{2}{t}^{\mathrm{2}} +\mathrm{5}\right)}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{10} \\ $$$${t}^{\mathrm{6}} −\mathrm{12}{t}^{\mathrm{4}} +\mathrm{25}{t}^{\mathrm{2}} −\mathrm{10}=\mathrm{0} \\ $$$$\left({t}^{\mathrm{2}} −\mathrm{2}\right)\left({t}^{\mathrm{4}} −\mathrm{10}{t}^{\mathrm{2}} +\mathrm{5}\right)=\mathrm{0} \\ $$$${t}=\pm\sqrt{\mathrm{2}}\vee{t}=\pm\sqrt{\mathrm{5}−\mathrm{2}\sqrt{\mathrm{5}}}\vee{t}=\pm\sqrt{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{5}}} \\ $$$${t}=\mathrm{tan}\:{x}\:\Leftrightarrow\:{x}={n}\pi+\mathrm{arctan}\:{t} \\ $$$$\mathrm{for}\:\mathrm{0}\leqslant{x}<\mathrm{90}°\:\mathrm{we}\:\mathrm{get} \\ $$$${x}=\mathrm{36}°\vee{x}\approx\mathrm{54}.\mathrm{74}°\vee{x}=\mathrm{72}° \\ $$
Commented by mathdanisur last updated on 13/Jun/21
$${Sir}\:{that}\:{is}\:{it}\:{cannot}\:{be}\:\mathrm{5}.? \\ $$
Commented by MJS_new last updated on 13/Jun/21
$$\mathrm{no}.\:\mathrm{just}\:\mathrm{type}\:\mathrm{it}\:\mathrm{in}\:\mathrm{any}\:\mathrm{calculator}. \\ $$