Menu Close

prove-that-tan-3pi-7-4sin-pi-7-7-




Question Number 69081 by myintkhaing1121960@gmail.com last updated on 19/Sep/19
prove that  tan ((3π)/7) −4sin (π/7) = (√7).
provethattan3π74sinπ7=7.
Answered by Tanmay chaudhury last updated on 19/Sep/19
7a=π  tan7a=tanπ=−0  ((s_1 −s_3 +s_5 −s_7 )/(1−s_2 +s_4 −s_6 ))=0  7c_1 tana−7c_3 tan^3 a+7c_5 tan^5 a−7c_7 tan^7 a=0  7tana−((7×6×5)/(3×2))tan^3 a+((7×6)/2)tan^5 a−tan^7 a=0  7tana−35tan^3 a+21tan^5 a−tan^7 a=0  tana=tan(π/7)≠0  7−35tan^2 a+21tan^4 a−tan^6 a=0  tan^6 a−21tan^4 a+35tan^2 a−7=0  from above eqn we have to find value of tana  tan3a=((3tana−tan^3 a)/(1−3tan^2 a))  sina  =(√(1−(1/(sec^2 a))))    =(√((tan^2 a)/(1+tan^2 a)))   tan3a−4sina  =((3tana−tan^3 a)/(1−3tan^2 a))−((4tana)/( (√(1+tan^2 a)) ))  wait...
7a=πtan7a=tanπ=0s1s3+s5s71s2+s4s6=07c1tana7c3tan3a+7c5tan5a7c7tan7a=07tana7×6×53×2tan3a+7×62tan5atan7a=07tana35tan3a+21tan5atan7a=0tana=tanπ70735tan2a+21tan4atan6a=0tan6a21tan4a+35tan2a7=0fromaboveeqnwehavetofindvalueoftanatan3a=3tanatan3a13tan2asina=11sec2a=tan2a1+tan2atan3a4sina=3tanatan3a13tan2a4tana1+tan2await
Answered by mind is power last updated on 19/Sep/19
we have   Π_(i=1) ^m tan(((iπ)/(2m+1)))=(√(2m+1))  we try too applie this gor m=3  ⇒tan ((π/7))tan (((2π)/7))tan (((3π)/7))=(√7)  we finish if and only if   ⇒tan ((π/7))tan (((2π)/7))tan (((3π)/7))=tan (((3π)/7))−4sin ((π/7))  let a=(π/7)  we want too show  tan (a)tan (2a)tan (3a)=tan (3a)−4sin (a)  ⇔((sin (a)sin (2a)sin (3a))/(cos (a)cos (2a)cos (3a)))=((sin (3a)−4sin (a)cos (3a))/(cos (3a)))  ⇔((sin (a).2sin (a)cos (a)sin  (3a))/(cos (a)cos (2a)cos (3a)))=((sin (3a)−2.2sin (a)cos(3a))/(cos (3a)))  ⇔((2sin^2 (a)sin (3a))/(cos (2a)))=sin (3a)−2.2cos (3a)sin (a)  sin (x)cos (y)=((sin(x+y)+sin(x−y))/2)⇒2sin (a)cos (3a)=sin(4a)−sin(2a)  2sin^2 (a)=1−cos(2a)  ⇒  ((2sin^2 (a)sin (3a))/(cos (2a)))=sin (3a)−2.2cos (3a)sin (a)  ⇔((sin(3a)(1−cos(2a)))/(cos(2a)))=sin(3a)−2sin(4a)+2sin(2a)  ⇔sin(3a)−sin(3a)cos(2a)=sin(3a)cos(2a)−2sin(4a)cos(2a)+2sin(2a)cos(2a)  ⇔sin(3a)−((sin(5a)+sin(a))/2)=((sin(5a)+sin(a))/2)−sin(6a)−sin(2a)+sin(4a)  sin(4a)=sin(3a)....a=(π/7)  sin(6a)=sin(a)  sin(5a)=sin(2a)  ⇒sin(3a)−((sin(2a)+sin(a))/2)=((sin(2a)+sin(a))/2)−sin(a)−sin(2a)+sin(3a)  ⇒0=((sin(2a)+sin(a)+sin(2a)+sin(a))/2)−sin(a)−sin(2a)−sin(3a)+sin(3a)  ⇔0=0  ⇒tan(((3π)/7))−4sin((π/7))=tan((π/7))tan(((2π)/7))tan(((3π)/7))=Π_(i=1) ^3 tan (((iπ)/7))=(√7)
wehavemi=1tan(iπ2m+1)=2m+1wetrytooappliethisgorm=3tan(π7)tan(2π7)tan(3π7)=7wefinishifandonlyiftan(π7)tan(2π7)tan(3π7)=tan(3π7)4sin(π7)leta=π7wewanttooshowtan(a)tan(2a)tan(3a)=tan(3a)4sin(a)sin(a)sin(2a)sin(3a)cos(a)cos(2a)cos(3a)=sin(3a)4sin(a)cos(3a)cos(3a)sin(a).2sin(a)cos(a)sin(3a)cos(a)cos(2a)cos(3a)=sin(3a)2.2sin(a)cos(3a)cos(3a)2sin2(a)sin(3a)cos(2a)=sin(3a)2.2cos(3a)sin(a)sin(x)cos(y)=sin(x+y)+sin(xy)22sin(a)cos(3a)=sin(4a)sin(2a)2sin2(a)=1cos(2a)2sin2(a)sin(3a)cos(2a)=sin(3a)2.2cos(3a)sin(a)sin(3a)(1cos(2a))cos(2a)=sin(3a)2sin(4a)+2sin(2a)sin(3a)sin(3a)cos(2a)=sin(3a)cos(2a)2sin(4a)cos(2a)+2sin(2a)cos(2a)sin(3a)sin(5a)+sin(a)2=sin(5a)+sin(a)2sin(6a)sin(2a)+sin(4a)sin(4a)=sin(3a).a=π7sin(6a)=sin(a)sin(5a)=sin(2a)sin(3a)sin(2a)+sin(a)2=sin(2a)+sin(a)2sin(a)sin(2a)+sin(3a)0=sin(2a)+sin(a)+sin(2a)+sin(a)2sin(a)sin(2a)sin(3a)+sin(3a)0=0tan(3π7)4sin(π7)=tan(π7)tan(2π7)tan(3π7)=3i=1tan(iπ7)=7
Commented by MJS last updated on 19/Sep/19
great!
great!
Commented by mind is power last updated on 19/Sep/19
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *