Menu Close

Prove-that-tan-sec-1-tan-tan-1-cot-




Question Number 10542 by FilupS last updated on 17/Feb/17
Prove that:  tan(sec^(−1) ((√(tan(θ)))))=(√(tan(θ)))(√(1−cot(θ)))
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{tan}\left(\mathrm{sec}^{−\mathrm{1}} \left(\sqrt{\mathrm{tan}\left(\theta\right)}\right)\right)=\sqrt{\mathrm{tan}\left(\theta\right)}\sqrt{\mathrm{1}−\mathrm{cot}\left(\theta\right)} \\ $$
Answered by mrW1 last updated on 17/Feb/17
let α=sec^(−1) ((√(tan (θ))))  ⇒sec α=(√(tan (θ)))  ⇒sec^2  α=tan (θ)  tan(sec^(−1) ((√(tan(θ)))))=tan α=(√(sec^2  α−1))=(√(tan (θ)−1))=(√(tan (θ)[1−(1/(tan (θ)))]))=(√(tan (θ)))(√(1−cot (θ)))  proven!
$${let}\:\alpha=\mathrm{sec}^{−\mathrm{1}} \left(\sqrt{\mathrm{tan}\:\left(\theta\right)}\right) \\ $$$$\Rightarrow\mathrm{sec}\:\alpha=\sqrt{\mathrm{tan}\:\left(\theta\right)} \\ $$$$\Rightarrow\mathrm{sec}^{\mathrm{2}} \:\alpha=\mathrm{tan}\:\left(\theta\right) \\ $$$$\mathrm{tan}\left(\mathrm{sec}^{−\mathrm{1}} \left(\sqrt{\mathrm{tan}\left(\theta\right)}\right)\right)=\mathrm{tan}\:\alpha=\sqrt{\mathrm{sec}^{\mathrm{2}} \:\alpha−\mathrm{1}}=\sqrt{\mathrm{t}{a}\mathrm{n}\:\left(\theta\right)−\mathrm{1}}=\sqrt{\mathrm{tan}\:\left(\theta\right)\left[\mathrm{1}−\frac{\mathrm{1}}{\mathrm{tan}\:\left(\theta\right)}\right]}=\sqrt{\mathrm{tan}\:\left(\theta\right)}\sqrt{\mathrm{1}−\mathrm{cot}\:\left(\theta\right)} \\ $$$${proven}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *