Menu Close

prove-that-tanx-cotx-2cot2x-




Question Number 10695 by okhema last updated on 23/Feb/17
prove that tanx−cotx=−2cot2x
provethattanxcotx=2cot2x
Answered by nume1114 last updated on 23/Feb/17
    tan x−cot x  =((sin x)/(cos x))−((cos x)/(sin x))  =((sin^2 x−cos^2 x)/(sin xcos x))  =((−(cos^2 x−sin^2 x))/((1/2)×2sin xcos x))  =−2((cos 2x)/(sin 2x))  =−2cot 2x
tanxcotx=sinxcosxcosxsinx=sin2xcos2xsinxcosx=(cos2xsin2x)12×2sinxcosx=2cos2xsin2x=2cot2x
Commented by okhema last updated on 23/Feb/17
i dnt understand how you come about with the fourth line come down
idntunderstandhowyoucomeaboutwiththefourthlinecomedown
Commented by nume1114 last updated on 23/Feb/17
i used double angle fomulas:  sin 2x=2sin xcos x  cos 2x=cos^2 x−sin^2 x
iuseddoubleanglefomulas:sin2x=2sinxcosxcos2x=cos2xsin2x
Answered by bar Jesús last updated on 24/Feb/17
    ((senx)/(cosx))−((cosx)/(senx))= −2cot2x    ((sen^2 x−cos^2 x)/(senxcosx))= −2cot2x           senxcosx=((sen2x)/2)           −(cos^2 x−sen^2 x)= sen^2 x−cos^2 x= −cos2x      ((−cos2x)/((sen2x)/2))= −2cot2x    ((−2cos2x)/(sen2x))= −2cot2x    −cot2x= −2cot2x
senxcosxcosxsenx=2cot2xsen2xcos2xsenxcosx=2cot2xsenxcosx=sen2x2(cos2xsen2x)=sen2xcos2x=cos2xcos2xsen2x2=2cot2x2cos2xsen2x=2cot2xcot2x=2cot2x
Commented by bar Jesús last updated on 24/Feb/17
jojojojo, excuse me  −2cot2x= −2cot2x
jojojojo,excuseme2cot2x=2cot2x

Leave a Reply

Your email address will not be published. Required fields are marked *