Question Number 10695 by okhema last updated on 23/Feb/17
$${prove}\:{that}\:{tanx}−{cotx}=−\mathrm{2}{cot}\mathrm{2}{x} \\ $$
Answered by nume1114 last updated on 23/Feb/17
$$\:\:\:\:\mathrm{tan}\:{x}−\mathrm{cot}\:{x} \\ $$$$=\frac{\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}−\frac{\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}} \\ $$$$=\frac{\mathrm{sin}^{\mathrm{2}} {x}−\mathrm{cos}^{\mathrm{2}} {x}}{\mathrm{sin}\:{x}\mathrm{cos}\:{x}} \\ $$$$=\frac{−\left(\mathrm{cos}^{\mathrm{2}} {x}−\mathrm{sin}^{\mathrm{2}} {x}\right)}{\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2sin}\:{x}\mathrm{cos}\:{x}} \\ $$$$=−\mathrm{2}\frac{\mathrm{cos}\:\mathrm{2}{x}}{\mathrm{sin}\:\mathrm{2}{x}} \\ $$$$=−\mathrm{2cot}\:\mathrm{2}{x} \\ $$
Commented by okhema last updated on 23/Feb/17
$${i}\:{dnt}\:{understand}\:{how}\:{you}\:{come}\:{about}\:{with}\:{the}\:{fourth}\:{line}\:{come}\:{down} \\ $$
Commented by nume1114 last updated on 23/Feb/17
$${i}\:{used}\:{double}\:{angle}\:{fomulas}: \\ $$$$\mathrm{sin}\:\mathrm{2}{x}=\mathrm{2sin}\:{x}\mathrm{cos}\:{x} \\ $$$$\mathrm{cos}\:\mathrm{2}{x}=\mathrm{cos}^{\mathrm{2}} {x}−\mathrm{sin}^{\mathrm{2}} {x} \\ $$$$ \\ $$
Answered by bar Jesús last updated on 24/Feb/17
$$ \\ $$$$ \\ $$$$\frac{{senx}}{{cosx}}−\frac{{cosx}}{{senx}}=\:−\mathrm{2}{cot}\mathrm{2}{x} \\ $$$$ \\ $$$$\frac{{sen}^{\mathrm{2}} {x}−{cos}^{\mathrm{2}} {x}}{{senxcosx}}=\:−\mathrm{2}{cot}\mathrm{2}{x} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:{senxcosx}=\frac{{sen}\mathrm{2}{x}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\: \\ $$$$−\left({cos}^{\mathrm{2}} {x}−{sen}^{\mathrm{2}} {x}\right)=\:{sen}^{\mathrm{2}} {x}−{cos}^{\mathrm{2}} {x}=\:−{cos}\mathrm{2}{x} \\ $$$$ \\ $$$$ \\ $$$$\frac{−{cos}\mathrm{2}{x}}{\frac{{sen}\mathrm{2}{x}}{\mathrm{2}}}=\:−\mathrm{2}{cot}\mathrm{2}{x} \\ $$$$ \\ $$$$\frac{−\mathrm{2}{cos}\mathrm{2}{x}}{{sen}\mathrm{2}{x}}=\:−\mathrm{2}{cot}\mathrm{2}{x} \\ $$$$ \\ $$$$−{cot}\mathrm{2}{x}=\:−\mathrm{2}{cot}\mathrm{2}{x} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by bar Jesús last updated on 24/Feb/17
$${jojojojo},\:{excuse}\:{me} \\ $$$$−\mathrm{2}{cot}\mathrm{2}{x}=\:−\mathrm{2}{cot}\mathrm{2}{x} \\ $$