Menu Close

prove-that-tanx-cotx-2cot2x-




Question Number 10695 by okhema last updated on 23/Feb/17
prove that tanx−cotx=−2cot2x
$${prove}\:{that}\:{tanx}−{cotx}=−\mathrm{2}{cot}\mathrm{2}{x} \\ $$
Answered by nume1114 last updated on 23/Feb/17
    tan x−cot x  =((sin x)/(cos x))−((cos x)/(sin x))  =((sin^2 x−cos^2 x)/(sin xcos x))  =((−(cos^2 x−sin^2 x))/((1/2)×2sin xcos x))  =−2((cos 2x)/(sin 2x))  =−2cot 2x
$$\:\:\:\:\mathrm{tan}\:{x}−\mathrm{cot}\:{x} \\ $$$$=\frac{\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}−\frac{\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}} \\ $$$$=\frac{\mathrm{sin}^{\mathrm{2}} {x}−\mathrm{cos}^{\mathrm{2}} {x}}{\mathrm{sin}\:{x}\mathrm{cos}\:{x}} \\ $$$$=\frac{−\left(\mathrm{cos}^{\mathrm{2}} {x}−\mathrm{sin}^{\mathrm{2}} {x}\right)}{\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2sin}\:{x}\mathrm{cos}\:{x}} \\ $$$$=−\mathrm{2}\frac{\mathrm{cos}\:\mathrm{2}{x}}{\mathrm{sin}\:\mathrm{2}{x}} \\ $$$$=−\mathrm{2cot}\:\mathrm{2}{x} \\ $$
Commented by okhema last updated on 23/Feb/17
i dnt understand how you come about with the fourth line come down
$${i}\:{dnt}\:{understand}\:{how}\:{you}\:{come}\:{about}\:{with}\:{the}\:{fourth}\:{line}\:{come}\:{down} \\ $$
Commented by nume1114 last updated on 23/Feb/17
i used double angle fomulas:  sin 2x=2sin xcos x  cos 2x=cos^2 x−sin^2 x
$${i}\:{used}\:{double}\:{angle}\:{fomulas}: \\ $$$$\mathrm{sin}\:\mathrm{2}{x}=\mathrm{2sin}\:{x}\mathrm{cos}\:{x} \\ $$$$\mathrm{cos}\:\mathrm{2}{x}=\mathrm{cos}^{\mathrm{2}} {x}−\mathrm{sin}^{\mathrm{2}} {x} \\ $$$$ \\ $$
Answered by bar Jesús last updated on 24/Feb/17
    ((senx)/(cosx))−((cosx)/(senx))= −2cot2x    ((sen^2 x−cos^2 x)/(senxcosx))= −2cot2x           senxcosx=((sen2x)/2)           −(cos^2 x−sen^2 x)= sen^2 x−cos^2 x= −cos2x      ((−cos2x)/((sen2x)/2))= −2cot2x    ((−2cos2x)/(sen2x))= −2cot2x    −cot2x= −2cot2x
$$ \\ $$$$ \\ $$$$\frac{{senx}}{{cosx}}−\frac{{cosx}}{{senx}}=\:−\mathrm{2}{cot}\mathrm{2}{x} \\ $$$$ \\ $$$$\frac{{sen}^{\mathrm{2}} {x}−{cos}^{\mathrm{2}} {x}}{{senxcosx}}=\:−\mathrm{2}{cot}\mathrm{2}{x} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:{senxcosx}=\frac{{sen}\mathrm{2}{x}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\: \\ $$$$−\left({cos}^{\mathrm{2}} {x}−{sen}^{\mathrm{2}} {x}\right)=\:{sen}^{\mathrm{2}} {x}−{cos}^{\mathrm{2}} {x}=\:−{cos}\mathrm{2}{x} \\ $$$$ \\ $$$$ \\ $$$$\frac{−{cos}\mathrm{2}{x}}{\frac{{sen}\mathrm{2}{x}}{\mathrm{2}}}=\:−\mathrm{2}{cot}\mathrm{2}{x} \\ $$$$ \\ $$$$\frac{−\mathrm{2}{cos}\mathrm{2}{x}}{{sen}\mathrm{2}{x}}=\:−\mathrm{2}{cot}\mathrm{2}{x} \\ $$$$ \\ $$$$−{cot}\mathrm{2}{x}=\:−\mathrm{2}{cot}\mathrm{2}{x} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by bar Jesús last updated on 24/Feb/17
jojojojo, excuse me  −2cot2x= −2cot2x
$${jojojojo},\:{excuse}\:{me} \\ $$$$−\mathrm{2}{cot}\mathrm{2}{x}=\:−\mathrm{2}{cot}\mathrm{2}{x} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *