Menu Close

prove-that-the-absolute-valje-of-z1-z2-lt-absolute-value-of-z1-absolute-value-of-z2-




Question Number 139778 by chiamaka last updated on 01/May/21
prove that the absolute valje of z1+z2<=absolute value of z1+absolute value of z2
provethattheabsolutevaljeofz1+z2<=absolutevalueofz1+absolutevalueofz2
Answered by mr W last updated on 01/May/21
Commented by mr W last updated on 01/May/21
OA=z_1   OB=z_2   OC=z_1 +z_2   ∣AC∣=∣OB∣=∣z_2 ∣  ∣OC∣≤∣OA∣+∣AC∣  ⇒∣z_1 +z_2 ∣≤∣z_1 ∣+∣z_2 ∣
OA=z1OB=z2OC=z1+z2AC∣=∣OB∣=∣z2OC∣⩽∣OA+AC⇒∣z1+z2∣⩽∣z1+z2
Answered by mr W last updated on 01/May/21
z_1 =a+bi  ∣z_1 ∣=(√(a^2 +b^2 ))  z_2 =p+qi  ∣z_2 ∣=(√(p^2 +q^2 ))  z_1 +z_2 =(a+p)+(b+q)i  ∣z_1 +z_2 ∣=(√((a+p)^2 +(b+q)^2 ))  Minkowski′s inequality:  ∣(√((a+p)^2 +(b+q)^2 ))≤(√(a^2 +b^2 ))+(√(p^2 +q^2 ))  i.e.  ∣z_1 +z_2 ∣≤∣z_1 ∣+∣z_2 ∣
z1=a+biz1∣=a2+b2z2=p+qiz2∣=p2+q2z1+z2=(a+p)+(b+q)iz1+z2∣=(a+p)2+(b+q)2Minkowskisinequality:(a+p)2+(b+q)2a2+b2+p2+q2i.e.z1+z2∣⩽∣z1+z2

Leave a Reply

Your email address will not be published. Required fields are marked *