Menu Close

prove-that-the-function-f-x-x-2-x-1-4-is-Riemannian-integral-




Question Number 143193 by mohammad17 last updated on 11/Jun/21
prove that the function f(x)=x^2   ,xε[1,4]  is Riemannian integral ?
provethatthefunctionf(x)=x2,xε[1,4]isRiemannianintegral?
Answered by mathmax by abdo last updated on 11/Jun/21
∫_1 ^4 f(x)dx=∫_1 ^4  x^2 dx =[(x^3 /3)]_1 ^4 =(1/3)(4^3 −1)=(1/3)(63)=((63)/3)=21  lim_(n→+∞) ((4−1)/n)Σ_(k=1) ^n f(1+(4−1)×(k/n))  =lim_(n→+∞) (3/n)Σ_(k=1) ^n f(1+((3k)/n))  =lim_(n→+∞) (3/n)Σ_(k=1) ^n (1+((3k)/n))^2  =lim_(n→+∞) (3/n)Σ_(k=1) ^n (1+((6k)/n)+((9k^2 )/n^2 ))  =3 +lim_(n→+∞) ((18)/n^2 )Σ_(k=1) ^n  k +lim_(n→+∞) ((27)/n^3 )Σ_(k=1) ^n k^2   =3+lim_(n→+∞) ((18)/n^2 )((n(n+1))/2) +lim_(n→+∞) ((27)/n^3 )((n(n+1)(2n+1))/6)  =3+9 +9 =21 ⇒f is Rieman integrable.
14f(x)dx=14x2dx=[x33]14=13(431)=13(63)=633=21limn+41nk=1nf(1+(41)×kn)=limn+3nk=1nf(1+3kn)=limn+3nk=1n(1+3kn)2=limn+3nk=1n(1+6kn+9k2n2)=3+limn+18n2k=1nk+limn+27n3k=1nk2=3+limn+18n2n(n+1)2+limn+27n3n(n+1)(2n+1)6=3+9+9=21fisRiemanintegrable.

Leave a Reply

Your email address will not be published. Required fields are marked *