Menu Close

Prove-that-the-locus-of-a-point-which-moves-its-distance-from-the-point-b-0-is-p-times-its-distance-from-the-point-b-0-is-p-2-1-x-2-y-2-b-2-2b-p-2-1-x




Question Number 6716 by Tawakalitu. last updated on 15/Jul/16
Prove that the locus of a point which moves its distance from   the point (−b, 0) is p times its distance from the point (b, 0) is                          (p^2  − 1)(x^2  + y^2  + b^2 ) − 2b(p^2  + 1)x = 0  Show that this locus is a circle and find its radius.
Provethatthelocusofapointwhichmovesitsdistancefromthepoint(b,0)isptimesitsdistancefromthepoint(b,0)is(p21)(x2+y2+b2)2b(p2+1)x=0Showthatthislocusisacircleandfinditsradius.
Answered by Yozzii last updated on 16/Jul/16
Let points P, A and B have coordinates (x,y),(−b,0)   and (b,0) respectively.  The information gives ∣PA∣=p∣PB∣ where p>0.  ∣PA∣=(√((x+b)^2 +y^2 )) and ∣PB∣=(√((x−b)^2 +y^2 )).  ∴(√((x+b)^2 +y^2 ))=p(√((x−b)^2 +y^2 ))  ⇒((√((x+b)^2 +y^2 )))^2 =(p(√((x−b)^2 +y^2 )))^2   (x+b)^2 +y^2 =p^2 (x−b)^2 +p^2 y^2   x^2 +2bx+b^2 +y^2 =p^2 x^2 −2p^2 bx+p^2 b^2 +p^2 y^2   (p^2 −1)x^2 +(p^2 −1)y^2 +(p^2 −1)b^2 −2bx(1+p^2 )=0  (p^2 −1)(x^2 +y^2 +b^2 )−2b(p^2 +1)x=0....(1)  Equation (1) represents the locus of P  in rectangular coordinates.   −−−−−−−−−−−−−−−−−−−−−−−−  If p≠±1, we can rewrite (1) as  x^2 +y^2 +b^2 −2(((b(p^2 +1))/(p^2 −1)))x=0  x^2 −2(((b(p^2 +1))/(p^2 −1)))x+(((b(p^2 +1))/(p^2 −1)))^2 −(((b(p^2 +1))/(p^2 −1)))^2 +(y−0)^2 =0  (x−((b(p^2 +1))/(p^2 −1)))^2 +(y−0)^2 =(((b(p^2 +1))/(p^2 −1)))^2   ⇒(√((x−((b(p^2 +1))/(p^2 −1)))^2 +(y−0)^2 ))=∣(b/(p^2 −1))∣(p^2 +1)....(2)  The form of (2) implies that the distance  between P(x,y) and the fixed point (((b(p^2 +1))/(p^2 −1)),0)  is always constant as P moves and b,p are  constants. Hence, the locus of P is a  circle and its radius is ∣(b/(p^2 −1))∣(p^2 +1).
LetpointsP,AandBhavecoordinates(x,y),(b,0)and(b,0)respectively.TheinformationgivesPA∣=pPBwherep>0.PA∣=(x+b)2+y2andPB∣=(xb)2+y2.(x+b)2+y2=p(xb)2+y2((x+b)2+y2)2=(p(xb)2+y2)2(x+b)2+y2=p2(xb)2+p2y2x2+2bx+b2+y2=p2x22p2bx+p2b2+p2y2(p21)x2+(p21)y2+(p21)b22bx(1+p2)=0(p21)(x2+y2+b2)2b(p2+1)x=0.(1)Equation(1)representsthelocusofPinrectangularcoordinates.Ifp±1,wecanrewrite(1)asx2+y2+b22(b(p2+1)p21)x=0x22(b(p2+1)p21)x+(b(p2+1)p21)2(b(p2+1)p21)2+(y0)2=0(xb(p2+1)p21)2+(y0)2=(b(p2+1)p21)2(xb(p2+1)p21)2+(y0)2=∣bp21(p2+1).(2)Theformof(2)impliesthatthedistancebetweenP(x,y)andthefixedpoint(b(p2+1)p21,0)isalwaysconstantasPmovesandb,pareconstants.Hence,thelocusofPisacircleanditsradiusisbp21(p2+1).
Commented by Tawakalitu. last updated on 16/Jul/16
Wow great. thanks
Wowgreat.thanks

Leave a Reply

Your email address will not be published. Required fields are marked *