Prove-that-the-locus-of-a-point-which-moves-its-distance-from-the-point-b-0-is-p-times-its-distance-from-the-point-b-0-is-p-2-1-x-2-y-2-b-2-2b-p-2-1-x Tinku Tara June 3, 2023 Coordinate Geometry 0 Comments FacebookTweetPin Question Number 6716 by Tawakalitu. last updated on 15/Jul/16 Provethatthelocusofapointwhichmovesitsdistancefromthepoint(−b,0)isptimesitsdistancefromthepoint(b,0)is(p2−1)(x2+y2+b2)−2b(p2+1)x=0Showthatthislocusisacircleandfinditsradius. Answered by Yozzii last updated on 16/Jul/16 LetpointsP,AandBhavecoordinates(x,y),(−b,0)and(b,0)respectively.Theinformationgives∣PA∣=p∣PB∣wherep>0.∣PA∣=(x+b)2+y2and∣PB∣=(x−b)2+y2.∴(x+b)2+y2=p(x−b)2+y2⇒((x+b)2+y2)2=(p(x−b)2+y2)2(x+b)2+y2=p2(x−b)2+p2y2x2+2bx+b2+y2=p2x2−2p2bx+p2b2+p2y2(p2−1)x2+(p2−1)y2+(p2−1)b2−2bx(1+p2)=0(p2−1)(x2+y2+b2)−2b(p2+1)x=0….(1)Equation(1)representsthelocusofPinrectangularcoordinates.−−−−−−−−−−−−−−−−−−−−−−−−Ifp≠±1,wecanrewrite(1)asx2+y2+b2−2(b(p2+1)p2−1)x=0x2−2(b(p2+1)p2−1)x+(b(p2+1)p2−1)2−(b(p2+1)p2−1)2+(y−0)2=0(x−b(p2+1)p2−1)2+(y−0)2=(b(p2+1)p2−1)2⇒(x−b(p2+1)p2−1)2+(y−0)2=∣bp2−1∣(p2+1)….(2)Theformof(2)impliesthatthedistancebetweenP(x,y)andthefixedpoint(b(p2+1)p2−1,0)isalwaysconstantasPmovesandb,pareconstants.Hence,thelocusofPisacircleanditsradiusis∣bp2−1∣(p2+1). Commented by Tawakalitu. last updated on 16/Jul/16 Wowgreat.thanks Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Solve-the-following-equation-for-0-lt-lt-360-o-cosx-cos3x-cos5x-cos7x-0-Next Next post: If-8789-89-7690-79-5478-69-then-5230- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.