Question Number 3348 by RasheedSindhi last updated on 11/Dec/15

Commented by Rasheed Soomro last updated on 11/Dec/15

Commented by prakash jain last updated on 11/Dec/15
![sin 5x=sin (4x+x)= sin 4xcos x+cos 4xsin x =2sin 2xcos 2xcos x+(1−2sin^2 2x)sin x =4sin xcos^2 x(1−2sin^2 x)+(1−8sin^2 xcos^2 x)sin x =4sin x(1−sin^2 x)(1−2sin^2 x)+(1−8sin^2 x+8sin^4 x)sin x =4sinx −12sin^3 x+8sin^5 x+sin x−8sin^3 x+8sin^5 x =16sin^5 x−20sin^3 x+5sin x x=18° 5x=90 sin 18°=y 16y^5 −20y^3 +5y−1=0 y=1 satisfies 16y^5 −16y^4 +16y^4 −16y^3 −4y^3 +4y^2 −4y^2 +4y+y−1=0 (y−1)(16y^4 +16y^3 −4y^2 −4y+1)=0 (y−1)[4y^2 (4y^2 +4y+1)−8y^2 −4y+1]=0 (y−1)[4y^2 (2y+1)^2 −4y(2y+1)+1]=0 (y−1)(2y(2y+1)−1)^2 =0 (y−1)(4y^2 +2y−1)^2 =0 y=1 or y=((−2±(√(4+16)))/8)=((−1±(√5))/4) sin 18>0 so sin 18°=(((√5)−1)/4)](https://www.tinkutara.com/question/Q3359.png)
Commented by prakash jain last updated on 11/Dec/15

Answered by prakash jain last updated on 11/Dec/15

Commented by prakash jain last updated on 11/Dec/15

Commented by Rasheed Soomro last updated on 13/Dec/15
