Menu Close

Prove-that-the-regular-pentagon-is-possible-with-ruler-and-compass-




Question Number 3348 by RasheedSindhi last updated on 11/Dec/15
Prove that the regular pentagon  is possible with ruler and compass.
Provethattheregularpentagonispossiblewithrulerandcompass.
Commented by Rasheed Soomro last updated on 11/Dec/15
How can we prove that angle 108° is  possible?
Howcanweprovethatangle108°ispossible?
Commented by prakash jain last updated on 11/Dec/15
sin 5x=sin (4x+x)=  sin 4xcos x+cos 4xsin x  =2sin 2xcos 2xcos x+(1−2sin^2 2x)sin x  =4sin xcos^2 x(1−2sin^2 x)+(1−8sin^2 xcos^2 x)sin x  =4sin x(1−sin^2 x)(1−2sin^2 x)+(1−8sin^2 x+8sin^4 x)sin x  =4sinx −12sin^3 x+8sin^5 x+sin x−8sin^3 x+8sin^5 x  =16sin^5 x−20sin^3 x+5sin x  x=18°  5x=90  sin 18°=y  16y^5 −20y^3 +5y−1=0  y=1 satisfies  16y^5 −16y^4 +16y^4 −16y^3 −4y^3 +4y^2 −4y^2 +4y+y−1=0  (y−1)(16y^4 +16y^3 −4y^2 −4y+1)=0  (y−1)[4y^2 (4y^2 +4y+1)−8y^2 −4y+1]=0  (y−1)[4y^2 (2y+1)^2 −4y(2y+1)+1]=0  (y−1)(2y(2y+1)−1)^2 =0  (y−1)(4y^2 +2y−1)^2 =0  y=1 or y=((−2±(√(4+16)))/8)=((−1±(√5))/4)  sin 18>0 so sin 18°=(((√5)−1)/4)
sin5x=sin(4x+x)=sin4xcosx+cos4xsinx=2sin2xcos2xcosx+(12sin22x)sinx=4sinxcos2x(12sin2x)+(18sin2xcos2x)sinx=4sinx(1sin2x)(12sin2x)+(18sin2x+8sin4x)sinx=4sinx12sin3x+8sin5x+sinx8sin3x+8sin5x=16sin5x20sin3x+5sinxx=18°5x=90sin18°=y16y520y3+5y1=0y=1satisfies16y516y4+16y416y34y3+4y24y2+4y+y1=0(y1)(16y4+16y34y24y+1)=0(y1)[4y2(4y2+4y+1)8y24y+1]=0(y1)[4y2(2y+1)24y(2y+1)+1]=0(y1)(2y(2y+1)1)2=0(y1)(4y2+2y1)2=0y=1ory=2±4+168=1±54sin18>0sosin18°=514
Commented by prakash jain last updated on 11/Dec/15
Angle=108°
Angle=108°
Answered by prakash jain last updated on 11/Dec/15
As shown in comments  sin 18°=(((√5)−1)/4)  With ruler and compass:  We can draw (√5). So we can draw (√5) −1  we can draw 4.  we can draw right angle  So we can create a right angle △ABC with  AB=(√5) −1 ∠ABC=90 AC=4  Then sin∠ACB=(((√5)−1)/4)  so ∠C=18°  Since we draw 90° and 18° with ruler and  compass hence we can draw required 108°.  So a regular pentagon can be drawn with  ruler and compass.
Asshownincommentssin18°=514Withrulerandcompass:Wecandraw5.Sowecandraw51wecandraw4.wecandrawrightangleSowecancreatearightangleABCwithAB=51ABC=90AC=4ThensinACB=514soC=18°Sincewedraw90°and18°withrulerandcompasshencewecandrawrequired108°.Soaregularpentagoncanbedrawnwithrulerandcompass.
Commented by prakash jain last updated on 11/Dec/15
sin 18=(((√5)−1)/4),sin^2 18=((6−2(√5))/(16))=((3−(√5))/8)  cos^2  18=1−sin^2 18=1−((3−(√5))/8)=((5+(√5))/8)  cos 36=cos^2 18−sin^2 18=((2+2(√5))/8)=((1+(√5))/4)  For actual construction drawing 36° might be  easier.  Suppose you want draw pentagon of side 1.  draw AB=1  Draw BX =(√5) so AX=1+(√5)  Draw ⊥^r  to AX at X.  Draw an arc with Radius 4cm with center at  A. Say it cuts AX at Y.  ∠YAX=36°  draw line joining AY  Draw an Arc of radius 1 from B. Say it cuts  AY at C.  join BC. ∠ABC=108°  AB and BC are 2 sides of pentagon.  Rest of sides can be drawn by repeating ABC  since all 3 sides are known.
sin18=514,sin218=62516=358cos218=1sin218=1358=5+58cos36=cos218sin218=2+258=1+54Foractualconstructiondrawing36°mightbeeasier.Supposeyouwantdrawpentagonofside1.drawAB=1DrawBX=5soAX=1+5DrawrtoAXatX.DrawanarcwithRadius4cmwithcenteratA.SayitcutsAXatY.YAX=36°drawlinejoiningAYDrawanArcofradius1fromB.SayitcutsAYatC.joinBC.ABC=108°ABandBCare2sidesofpentagon.RestofsidescanbedrawnbyrepeatingABCsinceall3sidesareknown.
Commented by Rasheed Soomro last updated on 13/Dec/15
You interest and have knowledge in so many   areas of mathematics !!!   GREAT !
Youinterestandhaveknowledgeinsomanyareasofmathematics!!!GREAT!

Leave a Reply

Your email address will not be published. Required fields are marked *