Menu Close

Prove-that-those-functions-below-don-t-have-limit-a-lim-x-y-0-0-xy-x-2-y-2-b-lim-x-y-0-0-xy-y-3-x-2-y-2-




Question Number 11395 by Joel576 last updated on 23/Mar/17
Prove that those functions below don′t have limit  a) lim_((x,y)→(0,0))   ((xy)/(x^2  + y^2 ))    b)  lim_((x,y)→(0,0))   ((xy + y^3 )/(x^2  + y^2 ))
Provethatthosefunctionsbelowdonthavelimita)lim(x,y)(0,0)xyx2+y2b)lim(x,y)(0,0)xy+y3x2+y2
Commented by prakash jain last updated on 23/Mar/17
a)  x=rcos θ  y=rsin θ    ((xy)/(x^2  + y^2 ))=((r^2 cos θsin θ)/r^2 )= ((sin 2θ)/2)  lim_((x,y)→(0,0))   ((xy)/(x^2  + y^2 ))=lim_(r→0) ((sin 2θ)/2)=((sin 2θ)/2)  The limit value depends on the angle of  the line chosen to approach (0,0) so the  limit does not exist.
a)x=rcosθy=rsinθxyx2+y2=r2cosθsinθr2=sin2θ2lim(x,y)(0,0)xyx2+y2=limr0sin2θ2=sin2θ2Thelimitvaluedependsontheangleofthelinechosentoapproach(0,0)sothelimitdoesnotexist.

Leave a Reply

Your email address will not be published. Required fields are marked *