Menu Close

Prove-that-x-0-t-e-t-1-dt-n-1-1-e-x-n-n-2-




Question Number 140531 by Willson last updated on 09/May/21
Prove that  ∫^( x) _0  (t/(e^t −1)) dt = Σ_(n=1) ^(+∞)  (((1−e^(−x) )^n )/n^2 )
Provethat0xtet1dt=+n=1(1ex)nn2
Answered by mathmax by abdo last updated on 09/May/21
∫_0 ^x  (t/(e^t −1))dt =∫_0 ^x  ((te^(−t) )/(1−e^(−t) ))dt =∫_0 ^x  te^(−t) Σ_(n.0) ^∞  e^(−nt) dt  =Σ_(n=0) ^∞  ∫_0 ^x  t e^(−(n+1)t)  dt =_((n+1)t=y)   Σ_(n=0) ^∞  ∫_0 ^((n+1)x)  (y/(n+1))e^(−y)  (dy/(n+1))  =Σ_(n=0) ^∞  (1/((n+1)^2 ))∫_0 ^((n+1)x)  ye^(−y)  dy  and  ∫_0 ^((n+1)x)  y e^(−y)  dy =[−y e^(−y) ]_0 ^((n+1)x) +∫_0 ^((n+1)x)  e^(−y)  dy  =−(n+1)x e^(−(n+1)x) +[−e^(−y) ]_0 ^((n+1)x)   =−(n+1)xe^(−(n+1)x)  +1−e^(−(n+1)x)    =−((n+1)x +1)e^(−(n+1)x)  +1 ⇒  ∫_0 ^x  (t/(e^t −1))dt =Σ_(n=0) ^∞  (1/((n+1)^2 ))(1−((n+1)x)e^(−(n+1)x)  +1)  =Σ_(n=1) ^∞   (1/n^2 )(1−nx)e^(−nx) +Σ_(n=1) ^∞  (1/n^2 )  =(π^2 /6) +Σ_(n=1) ^∞  (((1−nx)e^(−nx) )/n^2 ) ....
0xtet1dt=0xtet1etdt=0xtetn.0entdt=n=00xte(n+1)tdt=(n+1)t=yn=00(n+1)xyn+1eydyn+1=n=01(n+1)20(n+1)xyeydyand0(n+1)xyeydy=[yey]0(n+1)x+0(n+1)xeydy=(n+1)xe(n+1)x+[ey]0(n+1)x=(n+1)xe(n+1)x+1e(n+1)x=((n+1)x+1)e(n+1)x+10xtet1dt=n=01(n+1)2(1((n+1)x)e(n+1)x+1)=n=11n2(1nx)enx+n=11n2=π26+n=1(1nx)enxn2.

Leave a Reply

Your email address will not be published. Required fields are marked *