Prove-that-x-0-t-e-t-1-dt-n-1-1-e-x-n-n-2- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 140531 by Willson last updated on 09/May/21 Provethat∫0xtet−1dt=∑+∞n=1(1−e−x)nn2 Answered by mathmax by abdo last updated on 09/May/21 ∫0xtet−1dt=∫0xte−t1−e−tdt=∫0xte−t∑n.0∞e−ntdt=∑n=0∞∫0xte−(n+1)tdt=(n+1)t=y∑n=0∞∫0(n+1)xyn+1e−ydyn+1=∑n=0∞1(n+1)2∫0(n+1)xye−ydyand∫0(n+1)xye−ydy=[−ye−y]0(n+1)x+∫0(n+1)xe−ydy=−(n+1)xe−(n+1)x+[−e−y]0(n+1)x=−(n+1)xe−(n+1)x+1−e−(n+1)x=−((n+1)x+1)e−(n+1)x+1⇒∫0xtet−1dt=∑n=0∞1(n+1)2(1−((n+1)x)e−(n+1)x+1)=∑n=1∞1n2(1−nx)e−nx+∑n=1∞1n2=π26+∑n=1∞(1−nx)e−nxn2…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: x-y-z-gt-0-x-y-z-3-proof-x-3-2-y-3-2-z-3-2-3-3-Next Next post: If-the-zeta-function-of-2-is-2-n-1-1-n-2-2-2-6-the-sum-of-infinite-rational-numbers-why-converges-for-2-6-an-irra Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.