Menu Close

Prove-that-x-1-2-1-x-2-x-




Question Number 12173 by Mr Chheang Chantria last updated on 15/Apr/17
Prove that ∀x∈[1,2]  ⇒ 1−x^2  ≤ x
Provethatx[1,2]1x2x
Answered by ajfour last updated on 18/Apr/17
x≥1  ⇒ 1−x ≤ 0 ≤  x^2   so,  1−x^2  ≤ x  for x∈ [1,∞)
x11x0x2so,1x2xforx[1,)
Commented by Mr Chheang Chantria last updated on 17/Apr/17
your solution is not enough
yoursolutionisnotenough
Answered by ajfour last updated on 17/Apr/17
let 1−x^2  ≥ x  ⇒ x^2 +x ≤ 1  ⇒ x^2 +x+(1/4) ≤ (5/4)  or  (x+(1/2))^2 ≤( ((√5)/2))^2   ⇒ −((√5)/2) ≤ x+(1/2) ≤ ((√5)/2)   ⇒   −((((√5)+1))/2) ≤ x ≤ ((((√5)−1))/2) < 1 < 2  so if x∈ [1,2]    1−x^2  < x .
let1x2xx2+x1x2+x+1454or(x+12)2(52)252x+1252(5+1)2x(51)2<1<2soifx[1,2]1x2<x.

Leave a Reply

Your email address will not be published. Required fields are marked *