prove-that-x-4-divide-1-x-2-n-nx-2-1-without-use-binomial-formula- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 72026 by mathmax by abdo last updated on 23/Oct/19 provethatx4divide(1+x2)n−nx2−1withoutusebinomialformula. Commented by mathmax by abdo last updated on 24/Oct/19 letPn(x)=(1+x2)n−nx2−1letprovethatx4dividePn(x)byrecurrencen=0⇒Pn(0)=1−1=0andx4divide0letsupposex4dividePn(x)⇒∃Q∈R[x]/Pn(x)=x4Q(x)wehavePn+1(x)=(1+x2)n+1−(n+1)x2−1=(1+x2)(1+x2)n−(n+1)x2−1=(1+x2)(Pn(x)+nx2+1)−(n+1)x2−1=(1+x2)Pn(x)+nx2(1+x2)+1+x2−nx2−x2−1=(1+x2)Pn(x)+nx4=(1+x2)(x4Q(x))+nx4=x4{(1+x2)Q(x)+n}⇒x4dividePn+1(x)sotheresultisproved. Answered by mind is power last updated on 23/Oct/19 (1+x2)n−nx2−1forn=0,n=1,n=2justeevaluateforn⩾2p(x)=(1+x2)n−nx2−1p(0)=0p′(x)=2xn(1+x2)n−1−2nxp′(0)=0p″(x)=2n(1+x2)n−1+4x2n(n−1)(1+x2)n−2−2np″(0)=2n−2n=0p‴(x)=4nx(n−1)(1+x2)n−2+8xn(n−1)(1+x2)n−2+8x3n(n−1)(n−2)(1+x2)n−3p‴(0)=0taylorformulap(x)=∑2nk=1p(k)(0).xkk!=x4p(4)(0)4!+….=x4(.Q(x))Q(x)=∑2nk=4p(k)xk−4k!⇒X4∣(1+x2)n−nx2−1 Commented by mathmax by abdo last updated on 24/Oct/19 thankssir. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: if-a-b-c-3-and-a-3-b-3-c-3-27-find-a-2-b-2-c-2-Next Next post: Question-137568 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.