Menu Close

prove-that-x-4-divide-1-x-2-n-nx-2-1-without-use-binomial-formula-




Question Number 72026 by mathmax by abdo last updated on 23/Oct/19
prove that x^4  divide (1+x^2 )^n −nx^2 −1  without use  binomial  formula.
provethatx4divide(1+x2)nnx21withoutusebinomialformula.
Commented by mathmax by abdo last updated on 24/Oct/19
let P_n (x)=(1+x^2 )^n −nx^2 −1 let prove that x^4  divide P_n (x)  by recurrence  n=0 ⇒P_n (0)=1−1=0  and x^4  divide 0  let suppose x^4  divide P_n (x) ⇒ ∃ Q ∈R[x] /P_n (x)=x^4 Q(x)  we have P_(n+1) (x)=(1+x^2 )^(n+1) −(n+1)x^2 −1  =(1+x^2 )(1+x^2 )^n −(n+1)x^2 −1  =(1+x^2 )(P_n (x)+nx^2  +1)−(n+1)x^2 −1  =(1+x^2 )P_n (x)+nx^2 (1+x^2 )+1+x^2 −nx^2 −x^2 −1  =(1+x^2 )P_n (x)+nx^4   =(1+x^2 )(x^4 Q(x)) +nx^4   =x^4 { (1+x^2 )Q(x) +n} ⇒x^4  divide P_(n+1) (x) so the result is  proved.
letPn(x)=(1+x2)nnx21letprovethatx4dividePn(x)byrecurrencen=0Pn(0)=11=0andx4divide0letsupposex4dividePn(x)QR[x]/Pn(x)=x4Q(x)wehavePn+1(x)=(1+x2)n+1(n+1)x21=(1+x2)(1+x2)n(n+1)x21=(1+x2)(Pn(x)+nx2+1)(n+1)x21=(1+x2)Pn(x)+nx2(1+x2)+1+x2nx2x21=(1+x2)Pn(x)+nx4=(1+x2)(x4Q(x))+nx4=x4{(1+x2)Q(x)+n}x4dividePn+1(x)sotheresultisproved.
Answered by mind is power last updated on 23/Oct/19
(1+x^2 )^n −nx^2 −1  for n=0 ,n=1,n=2 juste evaluate  for n≥2  p(x)=(1+x^2 )^n −nx^2 −1  p(0)=0  p′(x)=2xn(1+x^2 )^(n−1) −2nx  p′(0)=0  p′′(x)=2n(1+x^2 )^(n−1) +4x^2 n(n−1)(1+x^2 )^(n−2) −2n  p′′(0)=2n−2n=0  p′′′(x)=4nx(n−1)(1+x^2 )^(n−2) +8xn(n−1)(1+x^2 )^(n−2) +8x^3 n(n−1)(n−2)(1+x^2 )^(n−3)   p′′′(0)=0  taylor formula  p(x)=Σ_(k=1) ^(2n) p^((k)) (0).(x^k /(k!))=((x^4 p^((4)) (0))/(4!))+....  =x^4 (.Q(x))  Q(x)=Σ_(k=4) ^(2n) ((p^((k)) x^(k−4) )/(k!))  ⇒X^4 ∣(1+x^2 )^n −nx^2 −1
(1+x2)nnx21forn=0,n=1,n=2justeevaluateforn2p(x)=(1+x2)nnx21p(0)=0p(x)=2xn(1+x2)n12nxp(0)=0p(x)=2n(1+x2)n1+4x2n(n1)(1+x2)n22np(0)=2n2n=0p(x)=4nx(n1)(1+x2)n2+8xn(n1)(1+x2)n2+8x3n(n1)(n2)(1+x2)n3p(0)=0taylorformulap(x)=2nk=1p(k)(0).xkk!=x4p(4)(0)4!+.=x4(.Q(x))Q(x)=2nk=4p(k)xk4k!X4(1+x2)nnx21
Commented by mathmax by abdo last updated on 24/Oct/19
thanks sir.
thankssir.

Leave a Reply

Your email address will not be published. Required fields are marked *