Menu Close

Prove-that-x-y-R-1-x-2-y-2-xy-3-x-y-




Question Number 12040 by Mr Chheang Chantria last updated on 10/Apr/17
Prove that ∀x,y∈R  ⇒ 1+ ((x^2 +y^2 +xy)/3) ≥ x+y
Provethatx,yR1+x2+y2+xy3x+y
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 10/Apr/17
x^2 +y^2 +xy≥3x+3y−3⇒  x^2 −2x+1+y^2 −2y+1+xy−x−y+1≥0  (x−1)^2 +(y−1)^2 +x(y−1)−(y−1)≥0  (x−1)^2 +(y−1)^2 +(x−1)(y−1)≥0  this iniquality,is valid for evrey x&y∈R.■  (A^2 +B^2 +AB≥0   ∀A,B∈R.)
x2+y2+xy3x+3y3x22x+1+y22y+1+xyxy+10(x1)2+(y1)2+x(y1)(y1)0(x1)2+(y1)2+(x1)(y1)0thisiniquality,isvalidforevreyx&yR.◼(A2+B2+AB0A,BR.)
Commented by Mr Chheang Chantria last updated on 11/Apr/17
Nice solution. Thanks you
Nicesolution.Thanksyou
Answered by ajfour last updated on 10/Apr/17
let   x+y=u  and  x−y=v  ⇒ xy=(1/4)(u^2 −v^2 )  consider :  f(x,y)=1+((x^2 +y^2 +xy)/3)−(x+y)      = 1+(((x+y)^2 −xy)/3) − (x+y)      = 1+(1/3){ u^2 −(1/4)(u^2 −v^2 )}−u      =1+ (1/3){(3/4)u^2 +(v^2 /4) }−u      = (u^2 /4)−u+1+(v^2 /(12))      = ((u/2)−1)^2 +(v^2 /(12))  ≥ 0  or  1+((x^2 +y^2 +xy)/3)−(x+y)         = (((x+y)/2)−1)^2 +(((x−y)^2 )/(12)) ≥ 0 .
letx+y=uandxy=vxy=14(u2v2)consider:f(x,y)=1+x2+y2+xy3(x+y)=1+(x+y)2xy3(x+y)=1+13{u214(u2v2)}u=1+13{34u2+v24}u=u24u+1+v212=(u21)2+v2120or1+x2+y2+xy3(x+y)=(x+y21)2+(xy)2120.
Commented by Mr Chheang Chantria last updated on 11/Apr/17
Good Solution. Thanks you
GoodSolution.Thanksyou

Leave a Reply

Your email address will not be published. Required fields are marked *