Menu Close

Prove-that-x-y-R-7x-2-6xy-2y-2-x-3-gt-0-




Question Number 11834 by Mr Chheang Chantria last updated on 02/Apr/17
Prove that ∀x,y∈R  ⇒7x^2 −6xy+2y^2 +x+3 > 0
Provethatx,yR7x26xy+2y2+x+3>0
Answered by mrW1 last updated on 02/Apr/17
7x^2 −6xy+2y^2 +x+3  =((3/( (√2)))x)^2 −2×(3/( (√2)))x×(√2)y+((√2)y)^2 +((1/2)x)^2 +2×(1/2)x+1+[7−((3/( (√2))))^2 −((1/2))^2 ]x^2 +(3−1)  =((3/( (√2)))x−(√2)y)^2 +((1/2)x+1)^2 +((3/2)x)^2 +2  >2>0
7x26xy+2y2+x+3=(32x)22×32x×2y+(2y)2+(12x)2+2×12x+1+[7(32)2(12)2]x2+(31)=(32x2y)2+(12x+1)2+(32x)2+2>2>0
Commented by Mr Chheang Chantria last updated on 03/Apr/17
Good solution ;)
Goodsolution;)
Answered by ajfour last updated on 02/Apr/17
6x^2 −6xy+2y^2 +x^2 +x+3  =2x^2 [3−((3y)/x)+((y/x))^2  ]+(x+(1/2))^2 −(1/4)+3  =2x^2 [((y/x)−(3/2))^2 −(9/4)+3 ]+(x+(1/2))^2 +((11)/4)  =2x^2 [(((2y−3x)^2 )/(4x^2 ))+(3/4)]+(x+(1/2))^2 +((11)/4)  =(((2y−3x)^2 )/2)+((3x^2 )/2)+(x+(1/2))^2 +((11)/4) >0
6x26xy+2y2+x2+x+3=2x2[33yx+(yx)2]+(x+12)214+3=2x2[(yx32)294+3]+(x+12)2+114=2x2[(2y3x)24x2+34]+(x+12)2+114=(2y3x)22+3x22+(x+12)2+114>0
Commented by Mr Chheang Chantria last updated on 03/Apr/17
that′s so sweet ;)
thatssosweet;)
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 02/Apr/17
7x^2 +(1−6y)x+2y^2 +3=0  Δ=(1−6y)^2 −4×7(2y^2 +3)=  1−12y+36y^2 −56y^2 −84=  −20y^2 −12y−83=−(20y^2 +12y+83)  Δ^′ =12^2 −4×20×83<0  because Δ′<0,then Δ only have one  sign that similar to the coefficent of  y^(2 )  i.e :(−20).so alwyes Δ<0 and the  7x^2 −6xy+2y^2 +3,anywere have one  sign that similar to sign of x^2 ,i.e:(+7)  so this polynomial is positive anywere.
7x2+(16y)x+2y2+3=0Δ=(16y)24×7(2y2+3)=112y+36y256y284=20y212y83=(20y2+12y+83)Δ=1224×20×83<0becauseΔ<0,thenΔonlyhaveonesignthatsimilartothecoefficentofy2i.e:(20).soalwyesΔ<0andthe7x26xy+2y2+3,anywerehaveonesignthatsimilartosignofx2,i.e:(+7)sothispolynomialispositiveanywere.
Commented by mrW1 last updated on 02/Apr/17
good and interesting point of view!
goodandinterestingpointofview!
Commented by Mr Chheang Chantria last updated on 03/Apr/17
nice solution and nice explain  Thanks you ;)
nicesolutionandniceexplainThanksyou;)

Leave a Reply

Your email address will not be published. Required fields are marked *