Menu Close

prove-that-x-y-x-y-




Question Number 71082 by aliesam last updated on 11/Oct/19
prove that     ∣ (√(∣x∣)) − (√(∣y∣)) ∣ ≤ (√(∣x−y∣))
provethatxyxy
Answered by Henri Boucatchou last updated on 11/Oct/19
As  ∣x∣ − ∣y∣ ≤ ∣∣x∣ − ∣y∣∣ ≤ ∣x − y∣,    (√(∣x∣)) − (√(∣y∣)) ≤ ∣(√(∣x∣)) − (√(∣y∣))∣      If  ∣(√(∣x∣)) − (√(∣y∣))∣ > (√(∣x − y∣)) ,  take  x=4  and  y=9 ⇒  ∣(√4) − (√9)∣ = ∣2−3∣ = 1 > (√(∣4−9∣)) = (√5) :  absurd;    so  ∣(√(∣x∣)) − (√(∣y∣))∣ ≤ (√(∣x − y∣)).
Asxy∣∣xy∣∣xy,xyxyIfxy>xy,takex=4andy=949=23=1>49=5:absurd;soxyxy.
Commented by aliesam last updated on 11/Oct/19
can you prove that without using numbers and thank you for that sol
canyouprovethatwithoutusingnumbersandthankyouforthatsol
Answered by mind is power last updated on 11/Oct/19
if xy≤0  its   clear  xy≥0  we can switch  (x,y) by (y,x) without changing inqyality  and change (x,y) withe (−x,−y) withoute changing the inquality  ⇒we can  so reduce possibilty st  x≥y≥0  ⇒(√x)≥(√y)  ⇒−2(√(xy))≤−2y  ⇒x+y−2(√(xy))≤x+y−2y  ⇒((√x)−(√y))^2 ≤(x−y)=((√(x−y)))^2   ⇒(√x)−(√y)≤(√(x−y))  ∴ since xy≥0 we are  (x≥0,y≥0)∪(x≤0,y≤0)  change (x,y) and (−x,−y)⇒R(x,y)elation is symetric over ofigine  so we can reduce (x≥0,y≥0) change (x,y) and (y,x) ⇒relation  symetric over y=x⇒R(x,y)∣x≥y⇔R(x,y)∣y≤x
ifxy0itsclearxy0wecanswitch(x,y)by(y,x)withoutchanginginqyalityandchange(x,y)withe(x,y)withoutechangingtheinqualitywecansoreducepossibiltystxy0xy2xy2yx+y2xyx+y2y(xy)2(xy)=(xy)2xyxysincexy0weare(x0,y0)(x0,y0)change(x,y)and(x,y)R(x,y)elationissymetricoverofiginesowecanreduce(x0,y0)change(x,y)and(y,x)relationsymetricovery=xR(x,y)xyR(x,y)yx
Commented by aliesam last updated on 11/Oct/19
thank you sir great work
thankyousirgreatwork

Leave a Reply

Your email address will not be published. Required fields are marked *