Question Number 10597 by Saham last updated on 19/Feb/17
$$\mathrm{prove}\:\mathrm{that} \\ $$$$\mid\mathrm{z}_{\mathrm{1}} −\:\mathrm{z}_{\mathrm{2}} \mid\:\leqslant\:\mid\mathrm{z}_{\mathrm{1}} \mid\:+\:\mid\mathrm{z}_{\mathrm{2}} \mid \\ $$
Answered by mrW1 last updated on 19/Feb/17
$${see}\:{picture}. \\ $$$${OB}=\mid{Z}_{\mathrm{1}} +{Z}_{\mathrm{2}} \mid \\ $$$${OC}=\mid{Z}_{\mathrm{1}} −{Z}_{\mathrm{2}} \mid \\ $$$${OA}=\mid{Z}_{\mathrm{1}} \mid \\ $$$${AB}=\mid{Z}_{\mathrm{2}} \mid \\ $$$${AC}=\mid−{Z}_{\mathrm{2}} \mid=\mid{Z}_{\mathrm{2}} \mid \\ $$$$ \\ $$$$\therefore\:{OB}\leqslant{OA}+{AB} \\ $$$$\because\:\mid{Z}_{\mathrm{1}} +{Z}_{\mathrm{2}} \mid\leqslant\mid{Z}_{\mathrm{1}} \mid+\mid{Z}_{\mathrm{2}} \mid \\ $$$$ \\ $$$$\therefore\:{OC}\leqslant{OA}+{AC} \\ $$$$\because\:\mid{Z}_{\mathrm{1}} −{Z}_{\mathrm{2}} \mid\leqslant\mid{Z}_{\mathrm{1}} \mid+\mid{Z}_{\mathrm{2}} \mid \\ $$
Commented by Saham last updated on 19/Feb/17
$$\mathrm{i}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}. \\ $$
Commented by Saham last updated on 19/Feb/17
$$\mathrm{can}\:\mathrm{i}\:\mathrm{connect}\:\mathrm{you}\:\mathrm{on}\:\mathrm{whatsapp}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{can}\:\mathrm{drop}\:\mathrm{my} \\ $$$$\mathrm{number}\:\mathrm{sir}. \\ $$
Commented by mrW1 last updated on 20/Feb/17
$${but}\:{i}'{m}\:{sorry},\:{i}\:{don}'{t}\:{use}\:{whatsapp}. \\ $$
Commented by Saham last updated on 20/Feb/17
$$\mathrm{facebook}\:??? \\ $$
Commented by mrW1 last updated on 20/Feb/17
$${actually}\:{i}\:{am}\:{not}\:{yet}\:{in}\:{social}\:{media}… \\ $$
Commented by Saham last updated on 20/Feb/17
$$\mathrm{Alright}\:\mathrm{sir}.\:\mathrm{anytime}\:\mathrm{you}\:\mathrm{are}\:\mathrm{there}. \\ $$
Commented by mrW1 last updated on 20/Feb/17
$${I}'{ll}\:{try}\:{my}\:{best}. \\ $$
Commented by Saham last updated on 20/Feb/17
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir}. \\ $$