Menu Close

prove-that-z-C-we-have-sinz-z-n-1-1-z-2-n-2-pi-2-




Question Number 67524 by mathmax by abdo last updated on 28/Aug/19
prove that ∀z ∈C  we have  sinz =z Π_(n=1) ^∞ (1−(z^2 /(n^2 π^2 )))
provethatzCwehavesinz=zn=1(1z2n2π2)
Commented by ~ À ® @ 237 ~ last updated on 29/Aug/19
The complement formulas give us   (π/(sin(πz)))=Γ(z)Γ(1−z)  Now  sin(πz)=(π/(Γ(z)Γ(1−z))) =(π/(−zΓ(z)Γ(−z)))   cause Γ(x+1)=xΓ(x)  knowing that  (1/(Γ(z)))= ze^(γz)  Π_(n=1) ^∞ (1+(z/n))e^(−(z/n))   (1/(Γ(z)Γ(−z)))= ze^(γz)  Π_(n=1) ^∞ (1+(z/n))e^(−(z/n))   . (−z)^ e^(γ(−z)) Π_(n=1) ^∞ (1+((−z)/n))e^(−((−z)/n))      =−z^2  Π_(n=1) ^∞ (1+(z/n))(1−(z/n))=−z^2  Π_(n=1) ^∞ (1−(z^2 /n^2 ))  So  sin(πz)=πzΠ_(n=1) ^∞ (1−(z^2 /n^2 ))    finally   with  w=πz   sin(w)=wΠ_(n=1) ^∞ (1−(w^2 /((nπ)^2 )))
Thecomplementformulasgiveusπsin(πz)=Γ(z)Γ(1z)Nowsin(πz)=πΓ(z)Γ(1z)=πzΓ(z)Γ(z)causeΓ(x+1)=xΓ(x)knowingthat1Γ(z)=zeγzn=1(1+zn)ezn1Γ(z)Γ(z)=zeγzn=1(1+zn)ezn.(z)eγ(z)n=1(1+zn)ezn=z2n=1(1+zn)(1zn)=z2n=1(1z2n2)Sosin(πz)=πzn=1(1z2n2)finallywithw=πzsin(w)=wn=1(1w2(nπ)2)

Leave a Reply

Your email address will not be published. Required fields are marked *