prove-that-z-C-we-have-sinz-z-n-1-1-z-2-n-2-pi-2- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 67524 by mathmax by abdo last updated on 28/Aug/19 provethat∀z∈Cwehavesinz=z∏n=1∞(1−z2n2π2) Commented by ~ À ® @ 237 ~ last updated on 29/Aug/19 Thecomplementformulasgiveusπsin(πz)=Γ(z)Γ(1−z)Nowsin(πz)=πΓ(z)Γ(1−z)=π−zΓ(z)Γ(−z)causeΓ(x+1)=xΓ(x)knowingthat1Γ(z)=zeγz∏∞n=1(1+zn)e−zn1Γ(z)Γ(−z)=zeγz∏∞n=1(1+zn)e−zn.(−z)eγ(−z)∏∞n=1(1+−zn)e−−zn=−z2∏∞n=1(1+zn)(1−zn)=−z2∏∞n=1(1−z2n2)Sosin(πz)=πz∏∞n=1(1−z2n2)finallywithw=πzsin(w)=w∏∞n=1(1−w2(nπ)2) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: x-2-f-x-f-x-2-f-x-Next Next post: calculate-1-x-2-1-x-4-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.