Menu Close

prove-the-convergence-of-0-1-ln-1-x-x-dx-




Question Number 74793 by mathmax by abdo last updated on 30/Nov/19
prove the convergence of   ∫_0 ^1  ((ln(1+(√x)))/( (√x)))dx
provetheconvergenceof01ln(1+x)xdx
Commented by mathmax by abdo last updated on 06/Dec/19
I=∫_0 ^1  ((ln(1+(√x)))/( (√x)))dx  changement (√x)=t give x=t^2  ⇒  I =∫_0 ^1  ((ln(1+t))/t)(2t)dt =2 ∫_0 ^1 ln(1+t)dt =_(1+t=u)   2∫_1 ^2 ln(u)du  =2[ulnu−u]_1 ^2 =2{2ln(2)−2+1} =4ln(2)−2
I=01ln(1+x)xdxchangementx=tgivex=t2I=01ln(1+t)t(2t)dt=201ln(1+t)dt=1+t=u212ln(u)du=2[ulnuu]12=2{2ln(2)2+1}=4ln(2)2
Answered by mind is power last updated on 01/Dec/19
u=(√x)⇒du=(1/(2(√x)))dx  ∫_0 ^1 2ln(1+u)du=[2(u+1)ln(u+1)−2u]_0 ^1 =4ln(2)−2
u=xdu=12xdx012ln(1+u)du=[2(u+1)ln(u+1)2u]01=4ln(2)2

Leave a Reply

Your email address will not be published. Required fields are marked *