Menu Close

Prove-the-folowing-result-0-pi-2-cot-log-sec-3-d-pi-4-240-I-need-your-help-if-possible-please-




Question Number 140056 by Ndala last updated on 03/May/21
Prove the folowing result:  ∫_0 ^(π/2) cot θ∙(log sec θ)^3 dθ=(π^4 /(240))  .  I need your help, if possible please.
Provethefolowingresult:0π2cotθ(logsecθ)3dθ=π4240.Ineedyourhelp,ifpossibleplease.
Answered by Ar Brandon last updated on 04/May/21
∫_0 ^(π/2) cotθ(ln secθ)^3 dθ=−∫_0 ^(π/2) sin^(−1) θcosθ∙ln^3 cosθdθ  β(m,n)=2∫_0 ^(π/2) sin^(2m−1) θcos^(2n−1) θdθ=((Γ(m)Γ(n))/(Γ(m+n)))  lnβ(m,n)=lnΓ(m)+lnΓ(n)−lnΓ(m+n)  ((β ′(m,n))/(β(m,n)))=ψ(n)−ψ(m+n)  β′′(m,n)=β(m,n)[ψ′(n)−ψ′(m+n)]+β′(m,n)[ψ(n)−ψ(m+n)]  β′′′(m,n)=β(m,n)[ψ′′(n)−ψ′′(m+n)]+β′(m,n)[ψ′(n)−ψ′(m+n)]                         +β′′(m,n)[ψ(n)−ψ(m+n)]+β′(m,n)[ψ′(n)−ψ′(m+n)]
0π2cotθ(lnsecθ)3dθ=0π2sin1θcosθln3cosθdθβ(m,n)=20π2sin2m1θcos2n1θdθ=Γ(m)Γ(n)Γ(m+n)lnβ(m,n)=lnΓ(m)+lnΓ(n)lnΓ(m+n)β(m,n)β(m,n)=ψ(n)ψ(m+n)β(m,n)=β(m,n)[ψ(n)ψ(m+n)]+β(m,n)[ψ(n)ψ(m+n)]β(m,n)=β(m,n)[ψ(n)ψ(m+n)]+β(m,n)[ψ(n)ψ(m+n)]+β(m,n)[ψ(n)ψ(m+n)]+β(m,n)[ψ(n)ψ(m+n)]
Commented by Ndala last updated on 07/May/21
Can  you complete?
Canyoucomplete?
Answered by qaz last updated on 07/May/21
∫_0 ^(π/2) (cot θ)∙ln^3 sec θdθ........cos θ→x  =∫_0 ^1 (x/( 1−x^2 ))ln^3 ((1/x))dx  =∫_0 ^∞ (e^(−2y) /(1−e^(−2y) ))y^3 dy................x→e^(−y)   =∫_0 ^∞ ((1/(1−e^(−2y) ))−1)y^3 dy  =Σ_(n=1) ^∞ ∫_0 ^∞ y^3 e^(−2ny) dy  =Σ_(n=1) ^∞ ((3!)/((2n)^4 ))  =(π^4 /(240))
0π/2(cotθ)ln3secθdθ..cosθx=01x1x2ln3(1x)dx=0e2y1e2yy3dy.xey=0(11e2y1)y3dy=n=10y3e2nydy=n=13!(2n)4=π4240

Leave a Reply

Your email address will not be published. Required fields are marked *