Menu Close

Prove-the-identity-log-a-b-x-log-a-x-log-b-x-log-b-x-log-a-x-From-the-Right-hand-side-log-a-x-log-b-x-log-b-x-log-a-x-Using-log-n-m-logm-logn-logx-loga-




Question Number 5603 by sanusihammed last updated on 22/May/16
Prove the identity    log_(a/b) x  =  ((log_a x log_b x)/(log_b x − log_a x))    From the Right hand side     ((log_a x log_b x)/(log_b x − log_a x))    Using... log_n m = ((logm)/(logn))    = ((((logx)/(loga)) × ((logx)/(logb)))/( ((logx)/(logb)) − ((logx)/(loga))))    = ((((logx)^2 )/(loga logb))/((logalogx − logb logx)/(loga logb )))    = (((logx)^2 )/(loga logb)) × ((loga logb)/(logalogx − logblogx))    = (((logx)^2 )/(logalogx − logblogx))    = (((logx)^2 )/(logx(loga − logb)))    = ((logx)/(loga − logb ))    = ((logx)/(log(a/b)))    Using... log_n m = ((logm)/(logn))    = log_(a/b) x               [Left Hand Side]    PROVED      THANKS SO MUCH YOZII
Provetheidentitylogabx=logaxlogbxlogbxlogaxFromtheRighthandsidelogaxlogbxlogbxlogaxUsinglognm=logmlogn=logxloga×logxlogblogxlogblogxloga=(logx)2logalogblogalogxlogblogxlogalogb=(logx)2logalogb×logalogblogalogxlogblogx=(logx)2logalogxlogblogx=(logx)2logx(logalogb)=logxlogalogb=logxlogabUsinglognm=logmlogn=logabx[LeftHandSide]PROVEDTHANKSSOMUCHYOZII
Commented by Yozzii last updated on 21/May/16
By change of base, log_n r=((log_e r)/(log_e n))=((lnr)/(ln(n)))  rhs=((((lnx)/(lna))×((lnx)/(lnb)))/(((lnx)/(lnb))−((lnx)/(lna))))=((ln^2 x)/(lnalnx−lnxlnb))  rhs=((lnx)/(lna−lnb))  rhs=((lnx)/(ln(a/b)))=log_(a/b) x=lhs
Bychangeofbase,lognr=logerlogen=lnrln(n)rhs=lnxlna×lnxlnblnxlnblnxlna=ln2xlnalnxlnxlnbrhs=lnxlnalnbrhs=lnxlnab=loga/bx=lhs
Commented by sanusihammed last updated on 22/May/16
Thanks
Thanks

Leave a Reply

Your email address will not be published. Required fields are marked *