Menu Close

Prove-the-sequence-n-2-1-ln-n-100-divergent-or-convergent-




Question Number 134571 by liberty last updated on 05/Mar/21
Prove the sequence Σ_(n=2) ^∞  (1/((ln n)^(100) ))  divergent or convergent
Provethesequencen=21(lnn)100divergentorconvergent
Answered by mathmax by abdo last updated on 05/Mar/21
the function f(x)=(1/((lnx)^(100) )) is decreazing on]2,+∞[ so Σf(n) and  ∫_2 ^∞ f(x)dx have the same nature  but  ∫_2 ^∞  f(x)dx=∫_2 ^∞ (dx/((lnx)^(100) ))=_(x=e^t )   ∫_(ln2) ^∞   ((e^t dt)/t^(100) )   we have  lim_(t→∞)  (e^t /t^(100) ) =+∞ ⇒this integral diverge ⇒this serie diverges
thefunctionf(x)=1(lnx)100isdecreazingon]2,+[soΣf(n)and2f(x)dxhavethesamenaturebut2f(x)dx=2dx(lnx)100=x=etln2etdtt100wehavelimtett100=+thisintegraldivergethisseriediverges

Leave a Reply

Your email address will not be published. Required fields are marked *