Menu Close

Prove-this-equation-2-x-1-x-1-2-1-2-2x-1-2-x-1-x-1-




Question Number 73974 by Raxreedoroid last updated on 17/Nov/19
Prove this equation  ((2^(x−1) (x−(1/2))!)/((1/2)!))=(((2x−1)!)/(2^(x−1) (x−1)!))
Provethisequation2x1(x12)!12!=(2x1)!2x1(x1)!
Answered by mind is power last updated on 17/Nov/19
Γ(2x)=(2x−1)!  β(x,x)=((Γ(x).Γ(x))/(Γ(2x)))  β(x,x)=2∫_0 ^(π/2) cos^(2x−1) (t).sin^(2x−1) (t)dt  =2∫_0 ^(π/2) .(sin(t)cos(t))^(2x−1) .dt  =2∫_0 ^(π/2) (((sin(2t))/2))^(2x−1) dt  =(1/2^(2x−2) ).∫_0 ^(π/2) .sin^(2x−1) (2t)dt  u=2t⇒β(x,x)=(1/2^(2x−2) ).∫_0 ^π sin^(2x−1) (u)du=(1/2^(2x−2) )∫_0 ^(π/2) sin^(2x−1) (u)du+(1/2^(2x−2) )∫_(π/2) ^π sin^(2x−1) (u)du  ∫_0 ^(π/2) sin^(2x−1) (u)du=(1/2)β((1/2),x)  ∫_(π/2) ^π sin^(2x−1) (u)du=∫_0 ^(π/2) sin^(2x−1) (u+(π/2))d(u)=(1/2)β(x,(1/2))=(1/2)β((1/2),x)  ⇒∫_0 ^π sin^(2x−1) (t)dt=β(x,(1/2))  ⇒β(x,x)=(1/2^(2x−2) ).β(x,(1/2))  ⇔((Γ(x).Γ(x))/(Γ(2x)))=(1/2^(2x−2) ).((Γ(x).Γ((1/2)))/(Γ(x+(1/2))))⇔((Γ(2x))/(Γ(x)2^(x−1) ))=((Γ(x+(1/2)))/(Γ((1/2)))).2^(x−1)   Γ(x)=(x−1)!,Γ(x+(1/2))=(x−(1/2))!,Γ(2x)=(2x−1)!  ⇔((2^(x−1) .(x−(1/2))!)/(((1/2))!))=(((2x−1)!)/((x−1)!.2^(x−1) ))
Γ(2x)=(2x1)!β(x,x)=Γ(x).Γ(x)Γ(2x)β(x,x)=20π2cos2x1(t).sin2x1(t)dt=20π2.(sin(t)cos(t))2x1.dt=20π2(sin(2t)2)2x1dt=122x2.0π2.sin2x1(2t)dtu=2tβ(x,x)=122x2.0πsin2x1(u)du=122x20π2sin2x1(u)du+122x2π2πsin2x1(u)du0π2sin2x1(u)du=12β(12,x)π2πsin2x1(u)du=0π2sin2x1(u+π2)d(u)=12β(x,12)=12β(12,x)0πsin2x1(t)dt=β(x,12)β(x,x)=122x2.β(x,12)Γ(x).Γ(x)Γ(2x)=122x2.Γ(x).Γ(12)Γ(x+12)Γ(2x)Γ(x)2x1=Γ(x+12)Γ(12).2x1Γ(x)=(x1)!,Γ(x+12)=(x12)!,Γ(2x)=(2x1)!2x1.(x12)!(12)!=(2x1)!(x1)!.2x1
Commented by Raxreedoroid last updated on 17/Nov/19
My proof is the following  (((2n−1)!)/(2^(n−1) (n−1)!))=1,3,15,105,945...  Π_(k=1) ^(n−1) 2k+1=1∙3∙5∙7∙9...(2n+1)  let u=2k+1  n=1,Π_(k=1) ^0 u=1  n=2,Π_(k=1) ^1 u=1∙3=3  n=3,Π_(k=1) ^2 u=1∙3∙5=15  n=4,Π_(k=1) ^3 u=1∙3∙5∙7=105  n=5,Π_(k=1) ^4 u=945  It′s the same  Π_(k=1) ^(n−1) 2k+1=Π_(k=1) ^(n−1) 2(k+(1/2))=(Π_(k=1) ^(n−1) 2)(Π_(k=1) ^(n−1) k+(1/2))  Π_(k=1) ^(n−1) 2=2^(n−1)   Π_(k=1) ^(n−1) x+(1/2)=Π_(k=1+(1/2)) ^(n−1+(1/2)) x=(((n−(1/2))!)/((1(1/2)−1)!))=(((n−(1/2))!)/(((1/2))!))  Π_(k=1) ^(n−1) 2x+1=((2^(x−1) (x−(1/2))!)/(((1/2))!))
Myproofisthefollowing(2n1)!2n1(n1)!=1,3,15,105,945n1k=12k+1=13579(2n+1)letu=2k+1n=1,0k=1u=1n=2,1k=1u=13=3n=3,2k=1u=135=15n=4,3k=1u=1357=105n=5,4k=1u=945Itsthesamen1k=12k+1=n1k=12(k+12)=(n1k=12)(n1k=1k+12)n1k=12=2n1n1k=1x+12=n1+12k=1+12x=(n12)!(1121)!=(n12)!(12)!n1k=12x+1=2x1(x12)!(12)!
Commented by mind is power last updated on 17/Nov/19
yeah nice this for x∈N
yeahnicethisforxN
Commented by Raxreedoroid last updated on 17/Nov/19
I am surprised becuase I proved this  in a simple way even though I can′t understand  most of this
IamsurprisedbecuaseIprovedthisinasimplewayeventhoughIcantunderstandmostofthis
Commented by mind is power last updated on 17/Nov/19
if x∈Nor x∈C?
ifxNorxC?

Leave a Reply

Your email address will not be published. Required fields are marked *