Menu Close

prove-thst-I-0-f-x-1-lnx-x-dx-0-




Question Number 70601 by oyemi kemewari last updated on 06/Oct/19
prove thst I=∫_0 ^∞ f(x+(1/×))((lnx)/x)dx=0
$$\mathrm{prove}\:\mathrm{thst}\:\mathrm{I}=\int_{\mathrm{0}} ^{\infty} \mathrm{f}\left(\mathrm{x}+\frac{\mathrm{1}}{×}\right)\frac{\mathrm{lnx}}{\mathrm{x}}\mathrm{dx}=\mathrm{0} \\ $$
Answered by mind is power last updated on 06/Oct/19
let x=(1/y)⇒I=∫_∞ ^0 f((1/y)+y)((ln((1/y)))/(1/y)).((−1)/y^2 )=∫_0 ^∞ f(y+(1/y))((−ln(y))/y)=−I  ⇒2I=0⇒I=0
$${let}\:{x}=\frac{\mathrm{1}}{{y}}\Rightarrow{I}=\int_{\infty} ^{\mathrm{0}} {f}\left(\frac{\mathrm{1}}{{y}}+{y}\right)\frac{{ln}\left(\frac{\mathrm{1}}{{y}}\right)}{\frac{\mathrm{1}}{{y}}}.\frac{−\mathrm{1}}{{y}^{\mathrm{2}} }=\int_{\mathrm{0}} ^{\infty} {f}\left({y}+\frac{\mathrm{1}}{{y}}\right)\frac{−{ln}\left({y}\right)}{{y}}=−{I} \\ $$$$\Rightarrow\mathrm{2}{I}=\mathrm{0}\Rightarrow{I}=\mathrm{0} \\ $$
Commented by oyemi kemewari last updated on 07/Oct/19
thank you sir

Leave a Reply

Your email address will not be published. Required fields are marked *