Menu Close

q-




Question Number 5772 by sagarvijay444@gmail.com last updated on 27/May/16
q+
q+
Commented by FilupSmith last updated on 27/May/16
∃x∈Z^+ :x=pq, p,q∈Z^+ \{0, 1}  n,i∈P  p=Π_(n∣p) n  q=Π_(i∣q) i  ∴ x = product of factors of p and q  if p=a_1 ×a_2 ×...×a_n       q=b_1 ×b_2 ×...×b_i   x=(a_1 ×...×a_n )(b_1 ×...×b_i )  x=(a_1 ×...×a_n ×b_1 )(b_2 ×...×b_i )  x=(a_2 ×...×a_n )(a_1 ×b_1 ×...×b_i )  etc  number of pq that make x=#number of ways to arrange RHS  =(n+i)!    e.g.  x=12  =2×6  =2×2×3  #=3!=6  x_1 =2×2×3=2×6  x_2 =2×2×3=4×6  x_3 =2×2×3=6×2  (later half is reverse ab=ba)  x_4 =6×2  x_5 =6×4  x_6 =2×6    ∴number of ways to multiply two  numbers to get any +ve integer x  is equal to the factorial of the number of  prime factors x has.  (excluding a=1a=a1)  i.e.  p,q≠1     ^�  ^� \(  °⌣°)/ ^�  ^�
xZ+:x=pq,p,qZ+{0,1}n,iPp=npnq=iqix=productoffactorsofpandqifp=a1×a2××anq=b1×b2××bix=(a1××an)(b1××bi)x=(a1××an×b1)(b2××bi)x=(a2××an)(a1×b1××bi)etcYou can't use 'macro parameter character #' in math mode=(n+i)!e.g.x=12=2×6=2×2×3You can't use 'macro parameter character #' in math modex1=2×2×3=2×6x2=2×2×3=4×6x3=2×2×3=6×2(laterhalfisreverseab=ba)x4=6×2x5=6×4x6=2×6numberofwaystomultiplytwonumberstogetany+veintegerxisequaltothefactorialofthenumberofprimefactorsxhas.(excludinga=1a=a1)i.e.p,q1¯¯(°°)/¯¯

Leave a Reply

Your email address will not be published. Required fields are marked *